Math 180, Exam 2, Spring 2011
 Problem 1 Solution

1. The graph of a function $f(x)$ is shown below:

(a) Fill in the table below with the signs of the first and second derivatives of f on each of the intervals A, \ldots, G.

	A	B	C	D	E	F	G
sign of f^{\prime}							
sign of $f^{\prime \prime}$							

(b) Which of the points a, \ldots, g are critical points? For each critical point, say whether it is a local maximum, a local minimum or neither.
(c) Which of the points a, \ldots, g are inflection points?

Solution:

(a)

	A	B	C	D	E	F	G
sign of f^{\prime}	+	+	+	+	-	-	+
sign of $f^{\prime \prime}$	-	-	+	-	-	+	+

(b) c, e, and g are critical points because $f^{\prime}(x)=0$ at these points. c is neither a local minimum nor a local maximum. e is a local maximum. g is a local minimum.
(c) c, d, and f are inflection points because $f^{\prime \prime}(x)$ changes sign at these points.

Math 180, Exam 2, Spring 2011
 Problem 2 Solution

2. Sketch the graph of the function $f(x)=x^{-2}-x^{2}$ following the steps below.
(a) Determine the domain of f and find all asymptotes.
(b) Find the intervals where the graph of f is increasing, decreasing, concave up and concave down.
(c) Sketch the graph of f, clearly showing any local extrema, inflection points, x-intercepts, y-intercepts and asymptotes.

Solution:

(a) The domain of f is all real numbers except $x=0$. In fact, $x=0$ is a vertical asymptote. Furthermore, since

$$
\lim _{x \rightarrow \pm \infty}\left(x^{-2}-x^{2}\right)=-\infty
$$

we know that f does not have a horizontal asymptote.
(b) To determine the intervals of monotonicity, we first find the critical points of f. These are points where either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. The first derivative is:

$$
f^{\prime}(x)=-2 x^{-3}-2 x=-2 x-\frac{2}{x^{3}}
$$

$f^{\prime}(x)$ will not exist only when $x=0$. However, $x=0$ is not in the domain of f. Therefore, the only critical points we have are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
-2 x-\frac{2}{x^{3}} & =0 \\
-2\left(x+\frac{1}{x^{3}}\right) & =0 \\
-2\left(\frac{x^{4}+1}{x^{3}}\right) & =0 \\
x^{4}+1 & =0
\end{aligned}
$$

This equation has no solutions. Thus, f has no critical points. To determine the intervals of monotonicity we take the domain of f and evaluate $f^{\prime}(x)$ at test points to determine the sign of $f^{\prime}(x)$.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime}(-1)=4$	+
$(0, \infty)$	1	$f^{\prime}(1)=-4$	-

From the table we determine that f is decreasing on $(0, \infty)$ because $f^{\prime}(x)<0$ for all $x \in(0, \infty)$ and f is increasing on $(-\infty, 0)$ because $f^{\prime}(x)>0$ for all $x \in(-\infty, 0)$.

To determine the intervals of concavity, we first find the values of x for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(-2 x-2 x^{-3}\right)^{\prime} & =0 \\
-2+6 x^{-4} & =0 \\
-2+\frac{6}{x^{4}} & =0 \\
-2 x^{4}+6 & =0 \\
x^{4} & =3 \\
x & = \pm \sqrt[4]{3}
\end{aligned}
$$

To determine the intervals of monotonicity we split the domain of f into the intervals $(-\infty,-\sqrt[4]{3}),(-\sqrt[4]{3}, 0),(0, \sqrt[4]{3})$, and $(\sqrt[4]{3}, \infty)$ and evaluate $f^{\prime \prime}(x)$ at test points in each interval to determine the sign of $f^{\prime \prime}(x)$.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty,-\sqrt[4]{3})$	-2	$f^{\prime \prime}(-2)=-\frac{13}{8}$	-
$(-\sqrt[4]{3}, 0)$	-1	$f^{\prime \prime}(-1)=4$	+
$(0, \sqrt[4]{3})$	1	$f^{\prime \prime}(1)=4$	+
$(\sqrt[4]{3}, \infty)$	2	$f^{\prime \prime}(2)=-\frac{13}{8}$	-

From the table we determine that f is concave down on $(-\infty,-\sqrt[4]{3}) \cup(\sqrt[4]{3}, \infty)$ because $f^{\prime \prime}(x)<0$ for all $x \in(-\infty,-\sqrt[4]{3}) \cup(\sqrt[4]{3}, \infty)$ and f is concave up on $(-\sqrt[4]{3}, 0) \cup(0, \sqrt[4]{3})$ because $f^{\prime \prime}(x)>0$ for all $x \in(-\sqrt[4]{3}, 0) \cup(0, \sqrt[4]{3})$.

Math 180, Exam 2, Spring 2011
 Problem 3 Solution

3. Find the area of the largest rectangle that can be inscribed in a semicircle of radius 3 .

Figure 1:

Solution: Let x be half of the width of the rectangle and let y be the height. We seek to maximize the area so the function is:

$$
\text { Area }=2 x y
$$

The variables x and y can be related using the Pythagorean Theorem.

$$
x^{2}+y^{2}=3^{2}
$$

Solving the above equation for y we get:

$$
y=\sqrt{9-x^{2}}
$$

Plugging this into the area formula we get:

$$
\begin{aligned}
\text { Area } & =2 x y \\
f(x) & =2 x \sqrt{9-x^{2}}
\end{aligned}
$$

We must now find the absolute maximum of $f(x)$ on the domain $[0,3]$. We start by finding
the critical points, which will be the values of x for which $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(2 x \sqrt{9-x^{2}}\right)^{\prime} & =0 \\
2 x\left(\sqrt{9-x^{2}}\right)^{\prime}+(2 x)^{\prime} \sqrt{9-x^{2}} & =0 \\
2 x\left(\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2} \cdot(-2 x)\right)+2 \sqrt{9-x^{2}} & =0 \\
-\frac{2 x^{2}}{\sqrt{9-x^{2}}+2 \sqrt{9-x^{2}}} & =0 \\
\frac{-2 x^{2}+2\left(9-x^{2}\right)}{\sqrt{9-x^{2}}} & =0 \\
-2 x^{2}+2\left(9-x^{2}\right) & =0 \\
-x^{2}+9-x^{2} & =0 \\
x^{2} & =\frac{9}{2} \\
x & =\frac{3}{\sqrt{2}}
\end{aligned}
$$

Evaluating $f(x)$ at $x=0, \frac{3}{\sqrt{2}}$, and 3 we get:

$$
\begin{aligned}
f(0) & =2(0) \sqrt{9-0^{2}}=0 \\
f\left(\frac{3}{\sqrt{2}}\right) & =2\left(\frac{3}{\sqrt{2}}\right) \sqrt{9-\left(\frac{3}{\sqrt{2}}\right)^{2}}=9 \\
f(3) & =2(3) \sqrt{9-3^{2}}=0
\end{aligned}
$$

We can clearly see that $f(x)$ attains an absolute maximum of 9 at $x=\frac{3}{\sqrt{2}}$.

Math 180, Exam 2, Spring 2011
 Problem 4 Solution

4. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$
(b) $\lim _{x \rightarrow 0}(\cot x)\left(x^{2}+5 x\right)$
(c) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-4}{3 x^{2}+7 x}$

Solution:

(a) We evaluate the limit by first recognizing that $\cot x=\frac{\cos x}{\sin x}$. The limit then becomes:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right) & =\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{\cos x}{\sin x}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x \sin x}
\end{aligned}
$$

This limit is of the form $\frac{0}{0}$ which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x \sin x} & \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{(\sin x-x \cos x)^{\prime}}{(x \sin x)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{\cos x+x \sin x-\cos x}{x \cos x+\sin x} \\
& =\lim _{x \rightarrow 0} \frac{x \sin x}{x \cos x+\sin x}
\end{aligned}
$$

This limit is also of the form $\frac{0}{0}$. We apply L'Hôpital's Rule again.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x \sin x}{x \cos x+\sin x} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{(x \sin x)^{\prime}}{(x \cos x+\sin x)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{x \cos x+\sin x}{-x \sin x+\cos x+\cos x} \\
&=\frac{0 \cos 0+\sin 0}{-0 \sin 0+\cos 0+\cos 0} \\
&=0
\end{aligned}
$$

(b) We evaluate the limit by first recognizing that $\cot x=\frac{\cos x}{\sin x}$. The limit then becomes:

$$
\begin{aligned}
\lim _{x \rightarrow 0}(\cot x)\left(x^{2}+5 x\right) & =\lim _{x \rightarrow 0}\left(\frac{\cos x}{\sin x}\right)\left(x^{2}+5 x\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{\cos x}{\sin x}\right) x(x+5) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)(\cos x)(x+5) \\
& =\left(\lim _{x \rightarrow 0} \frac{x}{\sin x}\right)\left(\lim _{x \rightarrow 0}(\cos x)(x+5)\right) \\
& =(1)(\cos 0)(0+5) \\
& =5
\end{aligned}
$$

(c) In this limit we have a rational function where the numerator and denominator have the same degree. Therefore, the limit is the ratio of the leading coefficients.

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}-4}{3 x^{2}+7 x}=\frac{5}{3}
$$

Math 180, Exam 2, Spring 2011
 Problem 5 Solution

5.

(a) Use the tangent line approximation for the function $f(x)=\sqrt{x}$ at the point $x=9$ to estimate the number $\sqrt{8}$.
(b) Use two steps of Newton's method beginning with $x_{1}=3$ to estimate $\sqrt{8}$, the positive root of $x^{2}-8$.

Solution:

(a) The linearization at $x=9$ is:

$$
L(x)=f(9)+f^{\prime}(9)(x-9)
$$

The derivative is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Therefore, the linearization is:

$$
\begin{aligned}
& L(x)=\sqrt{9}+\frac{1}{2 \sqrt{9}}(x-9) \\
& L(x)=3+\frac{1}{6}(x-9)
\end{aligned}
$$

The approximate value of $\sqrt{8}$ is the value of $L(8)$ which is:

$$
\sqrt{8} \approx L(8)=3+\frac{1}{6}(8-9)=\frac{17}{6}
$$

(b) The function is $f(x)=x^{2}-8$ and its derivative is $f^{\prime}(x)=2 x$. Therefore, Newton's Method formula is:

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& x_{n+1}=x_{n}-\frac{x_{n}^{2}-8}{2 x_{n}}
\end{aligned}
$$

The value of x_{1} is:

$$
x_{1}=x_{0}-\frac{x_{0}^{2}-8}{2 x_{0}}=3-\frac{3^{2}-8}{2(3)}=\frac{17}{6}
$$

The value of x_{2} is:

$$
x_{2}=x_{1}-\frac{x_{1}^{2}-8}{2 x_{1}}=\frac{17}{6}-\frac{\left(\frac{17}{6}\right)^{2}-8}{2\left(\frac{17}{6}\right)}=\frac{577}{204}
$$

