Math 180, Exam 2, Spring 2011 Problem 1 Solution

1. The graph of a function f(x) is shown below:

(a) Fill in the table below with the signs of the first and second derivatives of f on each of the intervals A, \ldots, G .

	A	В	C	D	E	F	G
sign of f'							
sign of f''							

- (b) Which of the points a, \ldots, g are critical points? For each critical point, say whether it is a local maximum, a local minimum or neither.
- (c) Which of the points a, \ldots, g are inflection points?

Solution:

		A	В	C	D	E	F	G
(a)	sign of f'	+	+	+	+			+
	sign of f''			+	_	_	+	+

- (b) c, e, and g are critical points because f'(x) = 0 at these points. c is neither a local minimum nor a local maximum. e is a local maximum. g is a local minimum.
- (c) c, d, and f are inflection points because f''(x) changes sign at these points.

Math 180, Exam 2, Spring 2011 Problem 2 Solution

- 2. Sketch the graph of the function $f(x) = x^{-2} x^2$ following the steps below.
 - (a) Determine the domain of f and find all asymptotes.
 - (b) Find the intervals where the graph of f is increasing, decreasing, concave up and concave down.
 - (c) Sketch the graph of f, clearly showing any local extrema, inflection points, x-intercepts, y-intercepts and asymptotes.

Solution:

(a) The domain of f is all real numbers except x = 0. In fact, x = 0 is a vertical asymptote. Furthermore, since

$$\lim_{x \to \pm \infty} \left(x^{-2} - x^2 \right) = -\infty$$

we know that f does not have a horizontal asymptote.

(b) To determine the intervals of monotonicity, we first find the critical points of f. These are points where either f'(x) = 0 or f'(x) does not exist. The first derivative is:

$$f'(x) = -2x^{-3} - 2x = -2x - \frac{2}{x^3}$$

f'(x) will not exist only when x = 0. However, x = 0 is not in the domain of f. Therefore, the only critical points we have are solutions to f'(x) = 0.

$$f'(x) = 0$$
$$-2x - \frac{2}{x^3} = 0$$
$$-2\left(x + \frac{1}{x^3}\right) = 0$$
$$-2\left(\frac{x^4 + 1}{x^3}\right) = 0$$
$$x^4 + 1 = 0$$

This equation has no solutions. Thus, f has no critical points. To determine the intervals of monotonicity we take the domain of f and evaluate f'(x) at test points to determine the sign of f'(x).

Interval	Test Point, c	f'(c)	Sign of $f'(c)$	
$(-\infty,0)$	-1	f'(-1) = 4	+	
$(0,\infty)$	1	f'(1) = -4	_	

From the table we determine that f is decreasing on $(0, \infty)$ because f'(x) < 0 for all $x \in (0, \infty)$ and f is increasing on $(-\infty, 0)$ because f'(x) > 0 for all $x \in (-\infty, 0)$.

To determine the intervals of concavity, we first find the values of x for which f''(x) = 0.

$$f''(x) = 0$$

(-2x - 2x⁻³)' = 0
-2 + 6x⁻⁴ = 0
-2 + $\frac{6}{x^4} = 0$
-2x⁴ + 6 = 0
x⁴ = 3
x = \pm \sqrt[4]{3}

To determine the intervals of monotonicity we split the domain of f into the intervals $(-\infty, -\sqrt[4]{3}), (-\sqrt[4]{3}, 0), (0, \sqrt[4]{3}), \text{ and } (\sqrt[4]{3}, \infty)$ and evaluate f''(x) at test points in each interval to determine the sign of f''(x).

Interval	Test Point, c	f''(c)	Sign of $f''(c)$	
$(-\infty, -\sqrt[4]{3})$	-2	$f''(-2) = -\frac{13}{8}$	_	
$(-\sqrt[4]{3},0)$	-1	f''(-1) = 4	+	
$(0,\sqrt[4]{3})$	1	f''(1) = 4	+	
$(\sqrt[4]{3},\infty)$	2	$f''(2) = -\frac{13}{8}$	—	

From the table we determine that f is concave down on $(-\infty, -\sqrt[4]{3}) \cup (\sqrt[4]{3}, \infty)$ because f''(x) < 0 for all $x \in (-\infty, -\sqrt[4]{3}) \cup (\sqrt[4]{3}, \infty)$ and f is concave up on $(-\sqrt[4]{3}, 0) \cup (0, \sqrt[4]{3})$ because f''(x) > 0 for all $x \in (-\sqrt[4]{3}, 0) \cup (0, \sqrt[4]{3})$.

Math 180, Exam 2, Spring 2011 Problem 3 Solution

3. Find the area of the largest rectangle that can be inscribed in a semicircle of radius 3.

Figure 1:

Solution: Let x be half of the width of the rectangle and let y be the height. We seek to maximize the area so the function is:

$$Area = 2xy$$

The variables x and y can be related using the Pythagorean Theorem.

$$x^2 + y^2 = 3^2$$

Solving the above equation for y we get:

$$y = \sqrt{9 - x^2}$$

Plugging this into the area formula we get:

Area =
$$2xy$$

 $f(x) = 2x\sqrt{9 - x^2}$

We must now find the absolute maximum of f(x) on the domain [0,3]. We start by finding

the critical points, which will be the values of x for which f'(x) = 0.

$$f'(x) = 0$$
$$(2x\sqrt{9-x^2})' = 0$$
$$2x (\sqrt{9-x^2})' + (2x)'\sqrt{9-x^2} = 0$$
$$2x \left(\frac{1}{2}(9-x^2)^{-1/2} \cdot (-2x)\right) + 2\sqrt{9-x^2} = 0$$
$$-\frac{2x^2}{\sqrt{9-x^2}} + 2\sqrt{9-x^2} = 0$$
$$\frac{-2x^2 + 2(9-x^2)}{\sqrt{9-x^2}} = 0$$
$$-2x^2 + 2(9-x^2) = 0$$
$$-x^2 + 9 - x^2 = 0$$
$$x^2 = \frac{9}{2}$$
$$x = \frac{3}{\sqrt{2}}$$

Evaluating f(x) at $x = 0, \frac{3}{\sqrt{2}}$, and 3 we get:

$$f(0) = 2(0)\sqrt{9 - 0^2} = 0$$

$$f\left(\frac{3}{\sqrt{2}}\right) = 2\left(\frac{3}{\sqrt{2}}\right)\sqrt{9 - \left(\frac{3}{\sqrt{2}}\right)^2} = 9$$

$$f(3) = 2(3)\sqrt{9 - 3^2} = 0$$

We can clearly see that f(x) attains an absolute maximum of 9 at $x = \frac{3}{\sqrt{2}}$.

Math 180, Exam 2, Spring 2011 Problem 4 Solution

4. Evaluate the following limits:

(a) $\lim_{x \to 0} \left(\frac{1}{x} - \cot x \right)$ (b) $\lim_{x \to 0} (\cot x)(x^2 + 5x)$ (c) $\lim_{x \to \infty} \frac{5x^2 - 4}{3x^2 + 7x}$

Solution:

(a) We evaluate the limit by first recognizing that $\cot x = \frac{\cos x}{\sin x}$. The limit then becomes:

$$\lim_{x \to 0} \left(\frac{1}{x} - \cot x \right) = \lim_{x \to 0} \left(\frac{1}{x} - \frac{\cos x}{\sin x} \right)$$
$$= \lim_{x \to 0} \frac{\sin x - x \cos x}{x \sin x}$$

This limit is of the form $\frac{0}{0}$ which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x \sin x} \stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{(\sin x - x \cos x)'}{(x \sin x)'}$$
$$= \lim_{x \to 0} \frac{\cos x + x \sin x - \cos x}{x \cos x + \sin x}$$
$$= \lim_{x \to 0} \frac{x \sin x}{x \cos x + \sin x}$$

This limit is also of the form $\frac{0}{0}.$ We apply L'Hôpital's Rule again.

$$\lim_{x \to 0} \frac{x \sin x}{x \cos x + \sin x} \stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{(x \sin x)'}{(x \cos x + \sin x)'}$$
$$= \lim_{x \to 0} \frac{x \cos x + \sin x}{-x \sin x + \cos x + \cos x}$$
$$= \frac{0 \cos 0 + \sin 0}{-0 \sin 0 + \cos 0 + \cos 0}$$
$$= \boxed{0}$$

(b) We evaluate the limit by first recognizing that $\cot x = \frac{\cos x}{\sin x}$. The limit then becomes:

$$\lim_{x \to 0} (\cot x)(x^2 + 5x) = \lim_{x \to 0} \left(\frac{\cos x}{\sin x}\right)(x^2 + 5x)$$
$$= \lim_{x \to 0} \left(\frac{\cos x}{\sin x}\right)x(x + 5)$$
$$= \lim_{x \to 0} \left(\frac{x}{\sin x}\right)(\cos x)(x + 5)$$
$$= \left(\lim_{x \to 0} \frac{x}{\sin x}\right)\left(\lim_{x \to 0} (\cos x)(x + 5)\right)$$
$$= (1)(\cos 0)(0 + 5)$$
$$= 5$$

(c) In this limit we have a rational function where the numerator and denominator have the same degree. Therefore, the limit is the ratio of the leading coefficients.

$$\lim_{x \to \infty} \frac{5x^2 - 4}{3x^2 + 7x} = \boxed{\frac{5}{3}}$$

Math 180, Exam 2, Spring 2011 Problem 5 Solution

5.

- (a) Use the tangent line approximation for the function $f(x) = \sqrt{x}$ at the point x = 9 to estimate the number $\sqrt{8}$.
- (b) Use two steps of Newton's method beginning with $x_1 = 3$ to estimate $\sqrt{8}$, the positive root of $x^2 8$.

Solution:

(a) The linearization at x = 9 is:

$$L(x) = f(9) + f'(9)(x - 9)$$

The derivative is $f'(x) = \frac{1}{2\sqrt{x}}$. Therefore, the linearization is:

$$L(x) = \sqrt{9} + \frac{1}{2\sqrt{9}}(x-9)$$
$$L(x) = 3 + \frac{1}{6}(x-9)$$

The approximate value of $\sqrt{8}$ is the value of L(8) which is:

$$\sqrt{8} \approx L(8) = 3 + \frac{1}{6}(8-9) = \frac{17}{6}$$

(b) The function is $f(x) = x^2 - 8$ and its derivative is f'(x) = 2x. Therefore, Newton's Method formula is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{x_n^2 - 8}{2x_n}$$

The value of x_1 is:

$$x_1 = x_0 - \frac{x_0^2 - 8}{2x_0} = 3 - \frac{3^2 - 8}{2(3)} = \frac{17}{6}$$

The value of x_2 is:

$$x_2 = x_1 - \frac{x_1^2 - 8}{2x_1} = \frac{17}{6} - \frac{\left(\frac{17}{6}\right)^2 - 8}{2\left(\frac{17}{6}\right)} = \boxed{\frac{577}{204}}$$