Math 180, Exam 2, Spring 2013
 Problem 1 Solution

1. Find the derivative of each function below. You do not need to simplify your answers.
(a) $\tan ^{-1}(1+\cos x)$
(b) $x^{1 / x}$ (logarithmic differentiation may be useful)
(c) $x^{3}+y^{3}=3 y$ (here y is an implicit function of x).

Solution:

(a) We must use the Chain Rule and the fact that

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{x^{2}+1}
$$

This gives us

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{(1+\cos (x))^{2}+1} \cdot \frac{d}{d x}(1+\cos (x)) \\
& f^{\prime}(x)=\frac{1}{(1+\cos (x))^{2}+1} \cdot(-\sin (x))
\end{aligned}
$$

(b) We begin by letting $y=x^{1 / x}$. Then taking the natural logarithm of both sides of this equation and using the fact that $\ln \left(a^{n}\right)=n \ln (a)$ we obtain

$$
\begin{aligned}
& \ln (y)=\ln \left(x^{1 / x}\right) \\
& \ln (y)=\frac{1}{x} \ln (x) \\
& \ln (y)=\frac{\ln (x)}{x}
\end{aligned}
$$

Next we use implicit differentiation to obtain an equation involving $\frac{d y}{d x}$. In order to do this, we must use the Chain and Quotient Rules.

$$
\begin{aligned}
\frac{d}{d x} \ln (y) & =\frac{d}{d x}\left(\frac{\ln (x)}{x}\right) \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{x \cdot \frac{d}{d x} \ln (x)-\ln (x) \cdot \frac{d}{d x} x}{x^{2}} \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{x \cdot \frac{1}{x}-\ln (x) \cdot 1}{x^{2}} \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{1-\ln (x)}{x^{2}}
\end{aligned}
$$

Finally, we use algebra to find $\frac{d y}{d x}$ and then write our answer in terms of x only.

$$
\begin{aligned}
& \frac{d y}{d x}=y \cdot \frac{1-\ln (x)}{x^{2}} \\
& \frac{d y}{d x}=x^{1 / x} \cdot \frac{1-\ln (x)}{x^{2}}
\end{aligned}
$$

(c) Here we use implicit differentiation. Using the Power and Chain Rules we obtain

$$
\begin{array}{r}
\frac{d}{d x} x^{3}+\frac{d}{d x} y^{3}=\frac{d}{d x} 3 y \\
3 x^{2}+3 y^{2} \cdot \frac{d y}{d x}=3 \frac{d y}{d x}
\end{array}
$$

Now we use algebra to find $\frac{d y}{d x}$.

$$
\begin{aligned}
3 y^{2} \cdot \frac{d y}{d x}-3 \frac{d y}{d x} & =-3 x^{2} \\
\frac{d y}{d x}\left(3 y^{2}-3\right) & =-3 x^{2} \\
\frac{d y}{d x} & =\frac{-3 x^{2}}{3 y^{2}-3} \\
\frac{d y}{d x} & =\frac{x^{2}}{1-y^{2}}
\end{aligned}
$$

Math 180, Exam 2, Spring 2013
 Problem 2 Solution

2. For the function given by $f(x)=x^{4}-\frac{4}{3} x^{3}+1$ answer the following questions:
(a) Find the interval(s) where $f(x)$ is increasing, decreasing.
(b) Identify all local extrema.
(c) Find the interval(s) where $f(x)$ is concave up, concave down.
(d) Identify all inflection points.
(e) Sketch a graph of f consistent with the information determined in parts (a) and (b).

Your graph does not have to be precise.

Solution:

(a) To find the intervals of monotonicity we begin by finding the critical points of f. Since f is a polynomial these points will occur whenever $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
4 x^{3}-4 x^{2} & =0 \\
4 x^{2}(x-1) & =0 \\
x=0, x & =1
\end{aligned}
$$

We now split the domain of f into the intervals $(-\infty, 0),(0,1),(1, \infty)$ and let $c=$ $-1, \frac{1}{2}, 2$ be test points in each interval, respectively. We then evaluate $f^{\prime}(c)$ to determine if f is increasing or decreasing on each interval. Our results are summarized below.

Interval	Test Number, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$	Conclusion
$(-\infty, 0)$	-1	-8	-	decreasing
$(0,1)$	$\frac{1}{2}$	$-\frac{1}{2}$	-	decreasing
$(1, \infty)$	2	16	+	increasing

(b) From the table above we see that, although $f^{\prime}(0)=0$, there is no sign change in f^{\prime} across $x=0$. Thus, $f(0)$ is neither a local minimum nor a local maximum. On the other hand, $f^{\prime}(1)=0$ and f^{\prime} changes sign from - to + across $x=1$ which means that $f(1)=\frac{2}{3}$ is a local minimum of f according to the First Derivative Test.
(c) To find the intervals of concavity we begin by finding the possible inflection points of f. Since f is a polynomial these points will occur whenever $f^{\prime \prime}(x)=0$.

$$
\begin{array}{r}
f^{\prime \prime}(x)=0 \\
12 x^{2}-8 x=0 \\
4 x(3 x-2)=0 \\
x=0, x=\frac{2}{3}
\end{array}
$$

We now split the domain of f into the intervals $(-\infty, 0),\left(0, \frac{2}{3}\right),\left(\frac{2}{3}, \infty\right)$ and let $c=$ $-1, \frac{1}{2}, 1$ be test points in each interval, respectively. We then evaluate $f^{\prime \prime}(c)$ to determine if f is concave up or concave down on each interval. Our results are summarized below.

Interval	Test Number, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$	Conclusion
$(-\infty, 0)$	-1	20	+	concave up
$\left(0, \frac{2}{3}\right)$	$\frac{1}{2}$	-1	-	concave down
$\left(\frac{2}{3}, \infty\right)$	1	4	+	concave up

(d) Since (1) $f^{\prime \prime}(0)=0$ and $f^{\prime \prime}\left(\frac{2}{3}\right)=0$ and (2) $f^{\prime \prime}$ changes sign across both $x=0$ and $x=\frac{2}{3}$, we say that $x=0, \frac{2}{3}$ are inflection points.

(e)

Math 180, Exam 2, Spring 2013
 Problem 3 Solution

3. Use a linear approximation to estimate the following quantities. In each case indicate whether your answer is an underestimate or an overestimate.
(a) $\ln (0.98)$
(b) $\sin (0.02)$

Solution:

(a) Let $f(x)=\ln (x)$ and $a=1$ (this is the number closest to 0.98 for which $f(a)$ is an integer.) The linearization of f at $x=a$ is obtained via the formula

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

We know that $f(1)=\ln (1)=0$, by definition. Furthermore, since $f^{\prime}(x)=\frac{1}{x}$ we know that $f^{\prime}(1)=1$. Thus, the function $L(x)$ is

$$
L(x)=0+1 \cdot(x-1)=x-1
$$

The approximate value of $\ln (0.98)$ is then

$$
\begin{aligned}
& \ln (0.98) \approx L(0.98) \\
& \ln (0.98) \approx 0.98-1 \\
& \ln (0.98) \approx-0.02
\end{aligned}
$$

The function $f(x)$ is concave down for all $x>0$. This is apparent because $f^{\prime \prime}(x)=$ $-\frac{1}{x^{2}}<0$ for all $x>0$. Therefore, we know that the graph of the tangent line, $y=x-1$, will lie above the graph of $y=\ln (x)$ at $x=0.98$. Thus, our estimate is an overestimate.
(b) Let $f(x)=\sin (x)$ and $a=0$ (this is the number closest to 0.02 for which $f(a)$ is an integer.) We know that $f(0)=\sin (0)=0$, by definition. Furthermore, since $f^{\prime}(x)=\cos (x)$ we know that $f^{\prime}(0)=\cos (0)=1$. Thus, the function $L(x)$ is

$$
L(x)=0+1 \cdot(x-0)=x
$$

The approximate value of $\sin (0.02)$ is then

$$
\begin{aligned}
& \sin (0.02) \approx L(0.02) \\
& \sin (0.02) \approx 0.02
\end{aligned}
$$

The function $f(x)$ is concave down on the interval $(0, \pi)$. This is apparent because $f^{\prime \prime}(x)=-\sin (x)<0$ for all x in $(0, \pi)$. Therefore, we know that the graph of the tangent line, $y=x$, will lie above the graph of $y=\sin (x)$ at $x=0.02$. Thus, our estimate is an overestimate.

Math 180, Exam 2, Spring 2013
 Problem 4 Solution

4. A rectangle has dimensions 3 cm by 2 cm . The sides begin increasing in length at a constant rate of $2 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the rectangle increasing after 10 s ?

Solution: Let x and y be the sides of the rectangle. The area of the rectangle is then

$$
A=x \cdot y
$$

Differentiating each side with respect to t we obtain

$$
\begin{aligned}
\frac{d}{d t} A & =\frac{d}{d t}(x \cdot y) \\
\frac{d A}{d t} & =\frac{d x}{d t} \cdot y+x \cdot \frac{d y}{d t}
\end{aligned}
$$

The rate of change of the length of each side of the triangle is $2 \mathrm{~cm} / \mathrm{s}$. Thus,

$$
\frac{d A}{d t}=2(y+x)
$$

In order to find the value of $\frac{d A}{d t}$ after 10 s, we need to know the lengths of the sides of the rectangle after 10s. Since the sides increase at a constant rate, we know that the size of the rectangle is $(3+2 \cdot 10) \mathrm{cm}$ by $(2+2 \cdot 10) \mathrm{cm}$ after 10 s . That is, the size is 23 cm by 22 cm . Therefore, the rate of change of the area of the rectangle is

$$
\frac{d A}{d t}=2(23+22)=90
$$

Math 180, Exam 2, Spring 2013
 Problem 5 Solution

5. Find the point on the graph of $y=\frac{2}{x}, x>0$ that is closest to the origin. Hint: Use the square of the distance between $(0,0)$ and $\left(x, \frac{2}{x}\right)$ as the function to be minimized.

Solution:

Using the hint, we define the function to be minimized as

$$
f(x)=x^{2}+y^{2}
$$

The constraint in the problem is the equation for the curve. That is

$$
y=\frac{2}{x}
$$

Plugging this equation into the equation above gives the function

$$
f(x)=x^{2}+\frac{4}{x^{2}}
$$

whose domain is $x>0$. The critical points of f are points where $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
2 x-\frac{8}{x^{3}} & =0 \\
x^{4} & =4 \\
x & =\sqrt{2}
\end{aligned}
$$

