Math 180, Exam 2, Study Guide Problem 1 Solution

1. Let $f(x)=\frac{x}{x^{2}+1}$.

- Determine the intervals on which f is increasing and those on which it is decreasing.
- Determine the intervals on which f is concave up and those on which it is concave down.
- Find the critical points of f and determine if they correspond to local extrema.
- Find the asymptotes of f.
- Determine the global extrema of f.
- Sketch the graph of f.

Solution: First, we extract as much information as we can from $f^{\prime}(x)$. We'll start by computing $f^{\prime}(x)$ using the Quotient Rule.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)(x)^{\prime}-(x)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-(x)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0 . f^{\prime}(x)$ is a rational function but the denominator is never 0 so $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} & =0 \\
1-x^{2} & =0 \\
x & = \pm 1
\end{aligned}
$$

Thus, $x=-1$ and $x=1$ are the critical points of f.
The domain of f is $(-\infty, \infty)$. We now split the domain into the three intervals $(-\infty,-1)$, $(-1,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$f^{\prime}(-2)=-\frac{3}{25}$	-
$(-1,1)$	0	$f^{\prime}(0)=1$	+
$(1, \infty)$	2	$f^{\prime}(2)=-\frac{3}{25}$	-

Using the table, we conclude that f is increasing on $(-1,1)$ because $f^{\prime}(x)>0$ for all $x \in(-1,1)$ and f is decreasing on $(-\infty,-1) \cup(1, \infty)$ because $f^{\prime}(x)<0$ for all $x \in(-\infty,-1) \cup$ $(1, \infty)$. Furthermore, since f^{\prime} changes sign from - to + at $x=-1$ the First Derivative Test implies that $f(-1)=-\frac{1}{2}$ is a local minimum and since f^{\prime} changes sign from + to - at $x=1$ the First Derivative Test implies that $f(1)=\frac{1}{2}$ is a local maximum.

We then extract as much information as we can from $f^{\prime \prime}(x)$. We'll start by computing $f^{\prime \prime}(x)$ using the Quotient and Chain Rules.

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{\left(x^{2}+1\right)^{2}\left(1-x^{2}\right)^{\prime}-\left(1-x^{2}\right)\left[\left(x^{2}+1\right)^{2}\right]^{\prime}}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{\left(x^{2}+1\right)^{2}(-2 x)-\left(1-x^{2}\right)\left[2\left(x^{2}+1\right)\left(x^{2}+1\right)^{\prime}\right]}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)^{2}-2\left(1-x^{2}\right)\left(x^{2}+1\right)(2 x)}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)-4 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{3}} \\
& f^{\prime \prime}(x)=\frac{2 x^{3}-6 x}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

The possible inflection points of $f(x)$ are the values of x for which either $f^{\prime \prime}(x)$ does not exist or $f^{\prime \prime}(x)=0$. Since $f^{\prime \prime}(x)$ exists for all $x \in \mathbb{R}$, the only possible inflection points are solutions to $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\frac{2 x^{3}-6 x}{\left(x^{2}+1\right)^{3}} & =0 \\
2 x^{3}-6 x & =0 \\
2 x\left(x^{2}-3\right) & =0 \\
x=0, x & = \pm \sqrt{3}
\end{aligned}
$$

We now split the domain into the four intervals $(-\infty,-\sqrt{3}),(-\sqrt{3}, 0),(0, \sqrt{3})$, and $(\sqrt{3}, \infty)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-\sqrt{3})$	-2	$f^{\prime \prime}(-2)=-\frac{4}{125}$	-
$(-\sqrt{3}, 0)$	-1	$f^{\prime \prime}(-1)=\frac{1}{2}$	+
$(0, \sqrt{3})$	1	$f^{\prime \prime}(1)=-\frac{1}{2}$	-
$(\sqrt{3}, \infty)$	2	$f^{\prime \prime}(2)=\frac{4}{125}$	+

Using the table, we conclude that f is concave up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$ because $f^{\prime \prime}(x)>0$ for all $x \in(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$ and f is concave down on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$ because $f^{\prime \prime}(x)<0$ for all $x \in(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$. Furthermore, since $f^{\prime \prime}$ changes sign at $x=-\sqrt{3}$, $x=0$, and $x=\sqrt{3}$, all three points are inflection points.
$f(x)$ does not have a vertical asymptote because it is continuous for all $x \in \mathbb{R}$. The horizontal asymptote is $y=0$ because

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \\
& =0
\end{aligned}
$$

The absolute minimum of $f(x)$ is $-\frac{1}{2}$ at $x=-1$ and the absolute maximum is $\frac{1}{2}$ at $x=1$.

Math 180, Exam 2, Study Guide Problem 2 Solution

2. Let $f(x)=x e^{x}$.
i) Find and classify the critical points of f.
ii) Find the global minimum of f over the entire real line.

Solution:

i) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Since $f(x)$ is a product of two infinitely differentiable functions, we know that $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x e^{x}\right)^{\prime} & =0 \\
(x)\left(e^{x}\right)^{\prime}+\left(e^{x}\right)(x)^{\prime} & =0 \\
x e^{x}+e^{x} & =0 \\
e^{x}(x+1) & =0 \\
x & =-1
\end{aligned}
$$

$x=-1$ is the only critical point because $e^{x}>0$ for all $x \in \mathbb{R}$.
We use the First Derivative Test to classify the critical point $x=-1$. The domain of f is $(-\infty, \infty)$. Therefore, we divide the domain into the two intervals $(-\infty,-1)$ and $(-1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine where $f^{\prime}(x)$ is positive and negative.

Interval	Test Number, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$-e^{-2}$	-
$(-1, \infty)$	0	1	+

Since f changes sign from - to + at $x=-1$ the First Derivative Test implies that $f(-1)=-e^{-1}$ is a local minimum.
ii) From the table in part (a), we conclude that f is decreasing on the interval $(-\infty,-1)$ and increasing on the interval $(-1, \infty)$. Therefore, $f(-1)=-e^{-1}$ is the global minimum of f over the entire real line.

Math 180, Exam 2, Study Guide Problem 3 Solution

3. Find the minimum and maximum of the function $f(x)=\sqrt{6 x-x^{3}}$ over the interval $[0,2]$.

Solution: The minimum and maximum values of $f(x)$ will occur at a critical point in the interval $[0,2]$ or at one of the endpoints. The critical points are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. The derivative $f^{\prime}(x)$ is found using the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[\left(6 x-x^{3}\right)^{1 / 2}\right]^{\prime} \\
f^{\prime}(x) & =\frac{1}{2}\left[\left(6 x-x^{3}\right)^{-1 / 2}\right] \cdot\left(6 x-x^{3}\right)^{\prime} \\
f^{\prime}(x) & =\frac{1}{2}\left[\left(6 x-x^{3}\right)^{-1 / 2}\right] \cdot\left(6-3 x^{2}\right) \\
f^{\prime}(x) & =\frac{6-3 x^{2}}{2 \sqrt{6 x-x^{3}}}
\end{aligned}
$$

$f^{\prime}(x)$ does not exist when the denominator is 0 . This will happen when $6 x-x^{3}=0$. The solutions to this equation are obtained as follows:

$$
\begin{aligned}
6 x-x^{3} & =0 \\
x\left(6-x^{2}\right) & =0 \\
x=0, x & = \pm \sqrt{6}
\end{aligned}
$$

The critical point $x=0$ is an endpoint of $[0,2]$. The critical points $x= \pm \sqrt{6}$ both lie outside $[0,2]$. Therefore, there are no critical points in $[0,2]$ where $f^{\prime}(x)$ does not exist.

The only critical points are points where $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{6-3 x^{2}}{2 \sqrt{6 x-x^{3}}} & =0 \\
6-3 x^{2} & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

The critical point $x=-\sqrt{2}$ lies outside $[0,2]$. Therefore, $x=\sqrt{2}$ is the only critical point in $[0,2]$ where $f^{\prime}(x)=0$.

We now evaluate $f(x)$ at $x=0, \sqrt{2}$, and 2 .

$$
\begin{aligned}
f(0) & =\sqrt{6(0)-0^{3}}=0 \\
f(\sqrt{2}) & =\sqrt{6(\sqrt{2})-(\sqrt{2})^{3}}=2 \sqrt[4]{2} \\
f(2) & =\sqrt{6(2)-2^{3}}=2
\end{aligned}
$$

The minimum value of $f(x)$ on $[0,2]$ is 0 because it is the smallest of the above values of f. The maximum is $2 \sqrt[4]{2}$ because it is the largest.

Math 180, Exam 2, Study Guide Problem 4 Solution

4. Let $f(x)=3 x-x^{3}$.
i) On what interval(s) is f increasing?
ii) On what interval(s) is f decreasing?
iii) On what interval(s) is f concave up?
iv) On what interval(s) is f concave down?
v) Sketch the graph of f.

Solution:

i) We begin by finding the critical points of $f(x)$. The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x-x^{3}\right)^{\prime} & =0 \\
3-3 x^{2} & =0 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

The domain of f is $(-\infty, \infty)$. We now split the domain into the three intervals $(-\infty,-1),(-1,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-1)$	-2	$f^{\prime}(-2)=-9$	-
$(-1,1)$	0	$f^{\prime}(0)=3$	+
$(1, \infty)$	2	$f^{\prime}(2)=-9$	-

Using the table we conclude that f is increasing on $(-1,1)$ because $f^{\prime}(x)>0$ for all $x \in(-1,1)$
ii) From the table above we conclude that f is decreasing on $(-\infty,-1) \cup(1, \infty)$ because $f^{\prime}(x)<0$ for all $x \in(-\infty,-1) \cup(1, \infty)$.
iii) To determine the intervals of concavity we start by finding solutions to the equation $f^{\prime \prime}(x)=0$ and where $f^{\prime \prime}(x)$ does not exist. However, since $f(x)$ is a polynomial we know that $f^{\prime \prime}(x)$ will exist for all $x \in \mathbb{R}$. The solutions to $f^{\prime \prime}(x)=0$ are:

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
-6 x & =0 \\
x & =0
\end{aligned}
$$

We now split the domain into the two intervals $(-\infty, 0)$ and $(0, \infty)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime \prime}(-1)=6$	+
$(0, \infty)$	1	$f^{\prime \prime}(0)=-6$	-

Using the table we conclude that f is concave up on $(-\infty, 0)$ because $f^{\prime \prime}(x)>0$ for all $x \in(-\infty, 0)$.
iv) From the above table we conclude that f is concave down on $(0, \infty)$ because $f^{\prime \prime}(x)<0$ for all $x \in(0, \infty)$.
v)

Math 180, Exam 2, Study Guide
 Problem 5 Solution

5. For a function $f(x)$ we know that $f(3)=2$ and that $f^{\prime}(3)=-3$. Give an estimate for $f(2.91)$.

Solution: We will estimate $f(2.91)$ using $L(2.91)$, the linearization $L(x)$ of the function $f(x)$ at $a=3$ evaluated at $x=2.91$. The function $L(x)$ is defined as:

$$
L(x)=f(3)+f^{\prime}(3)(x-3)
$$

Using $f(3)=2$ and $f^{\prime}(3)=-3$ we have:

$$
L(x)=2-3(x-3)
$$

Plugging $x=2.91$ into $L(x)$ we get:

$$
\begin{aligned}
& L(2.91)=2-3(2.91-3) \\
& L(2.91)=2.27
\end{aligned}
$$

Therefore, $f(2.91) \approx L(2.91)=2.27$.

Math 180, Exam 2, Study Guide
 Problem 6 Solution

6. Let $f(x)=\frac{x^{2}+1}{x+1}$. Find the best linear approximation of f around the point $x=0$ and use it in order to estimate $f(0.2)$. Would this be an underestimate or an overestimate?

Solution: The linearization $L(x)$ of $f(x)$ at $x=0$ is defined as:

$$
L(x)=f(0)+f^{\prime}(0)(x-0)
$$

The derivative $f^{\prime}(x)$ is found using the Quotient Rule:

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{x^{2}+1}{x+1}\right)^{\prime} \\
& =\frac{(x+1)\left(x^{2}+1\right)^{\prime}-\left(x^{2}+1\right)(x+1)^{\prime}}{(x+1)^{2}} \\
& =\frac{(x+1)(2 x)-\left(x^{2}+1\right)(1)}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x-1}{(x+1)^{2}}
\end{aligned}
$$

At $x=0$, the values of f^{\prime} and f are:

$$
\begin{aligned}
f^{\prime}(0) & =\frac{0^{2}+2(0)-1}{(0+1)^{2}}=-1 \\
f(0) & =\frac{0^{2}+1}{0+1}=1
\end{aligned}
$$

The linearization $L(x)$ is then:

$$
L(x)=1-x
$$

Since $f(0.2) \approx L(0.2)$ we find that:

$$
\begin{aligned}
f(0.2) & \approx L(0.2) \\
& \approx 1-0.2 \\
& \approx 0.8
\end{aligned}
$$

The actual value of $f(0.2)$ is:

$$
f(0.2)=\frac{0.2^{2}+1}{0.2+1}=\frac{1.04}{1.2}=\frac{13}{15}>\frac{12}{15}=0.8
$$

So $L(0.2)=0.8$ is an underestimate.

Math 180, Exam 2, Study Guide Problem 7 Solution

7. A rectangular farm of total area 20,000 sq. feet is to be fenced on three sides. Find the dimensions that are going to give the minimum cost.

Solution: We begin by letting x be the length of one side, y be the lengths of the remaining two fenced sides, and $C>0$ be the cost of the fence per unit length. The function we seek to minimize is the cost of the fencing:

Function: \quad Cost $=C(x+2 y)$
The constraint in this problem is that the area of the garden is 20,000 square meters.
Constraint : $\quad x y=20,000$
Solving the constraint equation (2) for y we get:

$$
\begin{equation*}
y=\frac{20,000}{x} \tag{3}
\end{equation*}
$$

Plugging this into the function (1) and simplifying we get:

$$
\begin{aligned}
& \text { Cost }=C\left[x+2\left(\frac{20,000}{x}\right)\right] \\
& f(x)=C\left(x+\frac{40,000}{x}\right)
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $(0, \infty)$. We choose this interval because x must be nonnegative (x represents a length) and non-zero (if x were 0 , then the area would be 0 but it must be 20,000).

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$ or it will not exist because the interval is open. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
C\left(x+\frac{40,000}{x}\right)^{\prime} & =0 \\
C\left(1-\frac{40,000}{x^{2}}\right) & =0 \\
x^{2} & =40,000 \\
x & = \pm 200
\end{aligned}
$$

However, since $x=-200$ is outside $(0, \infty)$, the only critical point is $x=200$. Plugging this into $f(x)$ we get:

$$
f(200)=C\left(200+\frac{40,000}{200}\right)=400 C
$$

Taking the limits of $f(x)$ as x approaches the endpoints we get:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} C\left(x+\frac{40,000}{x}\right)=C(0+\infty)=\infty \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} C\left(x+\frac{40,000}{x}\right)=C(\infty+0)=\infty
\end{aligned}
$$

both of which are larger than $400 C$. We conclude that the cost is an absolute minimum at $x=200$ and that the resulting cost is $400 C$. The last step is to find the corresponding value for y by plugging $x=200$ into equation (3).

$$
y=\frac{20,000}{x}=\frac{20,000}{200}=100
$$

Math 180, Exam 2, Study Guide Problem 8 Solution

8. Let $f(x)=3 x^{5}-x^{3}$.

- Find the critical points of f.
- Determine the intervals on which f is increasing and the ones on which it is decreasing.
- Determine the intervals on which f is concave up and the ones on which it is concave down.
- Determine the inflection points of f.
- Sketch the graph of f.

Solution:

- The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x^{5}-x^{3}\right)^{\prime} & =0 \\
15 x^{4}-3 x^{2} & =0 \\
3 x^{2}\left(5 x^{2}-1\right) & =0 \\
x=0, x & = \pm \frac{1}{\sqrt{5}}
\end{aligned}
$$

Therefore, the critical points of f are $x=0, \pm \frac{1}{\sqrt{5}}$.

- The domain of f is $(-\infty, \infty)$. We now split the domain into the four intervals $\left(-\infty,-\frac{1}{\sqrt{5}}\right),\left(-\frac{1}{\sqrt{5}}, 0\right),\left(0, \frac{1}{\sqrt{5}}\right)$, and $\left(\frac{1}{\sqrt{5}}, \infty\right)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$\left(-\infty,-\frac{1}{\sqrt{5}}\right)$	-1	$f^{\prime}(-1)=12$	+
$\left(-\frac{1}{\sqrt{5}}, 0\right)$	$-\frac{1}{5}$	$f^{\prime}\left(-\frac{1}{5}\right)=-\frac{12}{125}$	-
$\left(0, \frac{1}{\sqrt{5}}\right)$	$\frac{1}{5}$	$f^{\prime}\left(\frac{1}{5}\right)=-\frac{12}{125}$	-
$\left(\frac{1}{\sqrt{5}}, \infty\right)$	1	$f^{\prime}(1)=12$	+

Using the table we conclude that f is increasing on $\left(-\infty,-\frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$ because $f^{\prime}(x)>0$ for all $x \in\left(-\infty,-\frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$ and f is decreasing on $\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$ because $f^{\prime}(x)<0$ for all $x \in\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$.

- To determine the intervals of concavity we start by finding solutions to the equation $f^{\prime \prime}(x)=0$ and where $f^{\prime \prime}(x)$ does not exist. However, since $f(x)$ is a polynomial we know that $f^{\prime \prime}(x)$ will exist for all $x \in \mathbb{R}$. The solutions to $f^{\prime \prime}(x)=0$ are:

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(15 x^{4}-3 x^{2}\right)^{\prime} & =0 \\
60 x^{3}-6 x & =0 \\
6 x\left(10 x^{2}-1\right) & =0 \\
x=0, x & = \pm \frac{1}{\sqrt{10}}
\end{aligned}
$$

We now split the domain into the four intervals $\left(-\infty,-\frac{1}{\sqrt{10}}\right),\left(-\frac{1}{\sqrt{10}}, 0\right),\left(0, \frac{1}{\sqrt{10}}\right)$, and $\left(\frac{1}{\sqrt{10}}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$\left(-\infty,-\frac{1}{\sqrt{10}}\right)$	-1	$f^{\prime \prime}(-1)=-54$	-
$\left(-\frac{1}{\sqrt{10}}, 0\right)$	$-\frac{1}{10}$	$f^{\prime \prime}\left(-\frac{1}{10}\right)=\frac{27}{50}$	+
$\left(0, \frac{1}{\sqrt{10}}\right)$	$\frac{1}{10}$	$f^{\prime \prime}\left(\frac{1}{10}\right)=-\frac{27}{50}$	-
$\left(\frac{1}{\sqrt{10}}, \infty\right)$	1	$f^{\prime \prime}(1)=54$	+

Using the table we conclude that f is concave up on $\left(-\frac{1}{\sqrt{10}}, 0\right) \cup\left(\frac{1}{\sqrt{10}}, \infty\right)$ because $f^{\prime \prime}(x)>0$ for all $x \in\left(-\frac{1}{\sqrt{10}}, 0\right) \cup\left(\frac{1}{\sqrt{10}}, \infty\right)$ and that f is concave down on $\left(-\infty,-\frac{1}{\sqrt{10}}\right) \cup$ $\left(0, \frac{1}{\sqrt{10}}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(-\infty,-\frac{1}{\sqrt{10}}\right) \cup\left(0, \frac{1}{\sqrt{10}}\right)$.

- An inflection point of $f(x)$ is a point where $f^{\prime \prime}(x)$ changes sign. From the above table we conclude that $x=0, \pm \frac{1}{\sqrt{10}}$ are inflection points.

Math 180, Exam 2, Study Guide Problem 9 Solution

9. A rectangle has its left lower corner at $(0,0)$ and its upper right corner on the graph of

$$
f(x)=x^{2}+\frac{1}{x^{2}}
$$

i) Express its area as a function of x.
ii) Determine x for which the area is a minimum.
iii) Can the area of such a rectangle be as large as we please?

Solution:

i) The dimensions of the rectangle are x and y. Therefore, the area of the rectangle has the equation:

$$
\begin{equation*}
\text { Area }=x y \tag{1}
\end{equation*}
$$

We are asked to write the area as a function of x alone. Therefore, we must find an equation that relates x to y so that we can eliminate y from the area equation. This equation is

$$
\begin{equation*}
y=x^{2}+\frac{1}{x^{2}} \tag{2}
\end{equation*}
$$

because (x, y) must lie on this curve. Plugging this into the area equation we get:

$$
\begin{aligned}
& \text { Area }=x\left(x^{2}+\frac{1}{x^{2}}\right) \\
& g(x)=x^{3}+\frac{1}{x}
\end{aligned}
$$

ii) We seek the value of x that minimizes $g(x)$. The interval in the problem is $(0, \infty)$ because the domain of $f(x)$ is $(-\infty, 0) \cup(0, \infty)$ but (x, y) must be in the first quadrant.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$ or it will not exist because the interval is open. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}+\frac{1}{x}\right)^{\prime} & =0 \\
3 x^{2}-\frac{1}{x^{2}} & =0 \\
3 x^{4}-1 & =0 \\
x & = \pm \frac{1}{\sqrt[4]{3}}
\end{aligned}
$$

However, since $x=-\frac{1}{\sqrt[4]{3}}$ is outside $(0, \infty)$, the only critical point is $x=\frac{1}{\sqrt[4]{3}}$. Plugging this into $g(x)$ we get:

$$
f\left(\frac{1}{\sqrt[4]{3}}\right)=\left(\frac{1}{\sqrt[4]{3}}\right)^{3}+\frac{1}{\frac{1}{\sqrt[4]{3}}}=\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}
$$

Taking the limits of $f(x)$ as x approaches the endpoints we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(x^{3}+\frac{1}{x}\right)=0+\infty=\infty \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty}\left(x^{3}+\frac{1}{x}\right)=\infty+0=\infty
\end{aligned}
$$

both of which are larger than $\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}$. We conclude that the area is an absolute minimum at $x=\frac{1}{\sqrt[4]{3}}$ and that the resulting area is $\frac{1}{\sqrt[4]{27}}+\sqrt[4]{3}$.
iii) We can make the rectangle as large as we please by taking $x \rightarrow 0^{+}$or $x \rightarrow \infty$.

Math 180, Exam 2, Study Guide Problem 10 Solution

10. A box has square base of side x and constant surface area equal to $12 \mathrm{~m}^{2}$.
i) Express its volume as a function of x.
ii) Find the maximum volume of such a box.

Solution:

i) We begin by letting x be the length of one side of the base and y be the height of the box. The volume then has the equation:

$$
\begin{equation*}
\text { Volume }=x^{2} y \tag{1}
\end{equation*}
$$

We are asked to write the volume as a function of width, x. Therefore, we must find an equation that relates x to y so that we can eliminate y from the volume equation.

The constraint in the problem is that the total surface area is 12 . This gives us the equation

$$
\begin{equation*}
2 x^{2}+4 x y=12 \tag{2}
\end{equation*}
$$

Solving this equation for y we get

$$
\begin{align*}
2 x^{2}+4 x y & =12 \\
x^{2}+2 x y & =6 \\
y & =\frac{6-x^{2}}{2 x} \tag{3}
\end{align*}
$$

We then plug this into the volume equation (1) to write the volume in terms of x only.

$$
\begin{align*}
\text { Volume } & =x^{2} y \\
\text { Volume } & =x^{2}\left(\frac{6-x^{2}}{2 x}\right) \\
f(x) & =3 x-\frac{1}{2} x^{3} \tag{4}
\end{align*}
$$

ii) We seek the value of x that maximizes $f(x)$. The interval in the problem is $(0, \sqrt{6}]$. We know that $x>0$ because x must be positive and nonzero (otherwise, the surface area would be 0 and it must be 12). It is possible that $y=0$ in which case the surface area constraint would give us $2 x^{2}+4 x(0)=12 \Rightarrow x^{2}=6 \Rightarrow x=\sqrt{6}$.

The absolute maximum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \sqrt{6}]$, at $x=\sqrt{6}$, or it will not exist. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x-\frac{1}{2} x^{3}\right)^{\prime} & =0 \\
3-\frac{3}{2} x^{2} & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

However, since $x=-\sqrt{2}$ is outside $(0, \sqrt{6}]$, the only critical point is $x=\sqrt{2}$. Plugging this into $f(x)$ we get:

$$
f(\sqrt{2})=3(\sqrt{2})-\frac{1}{2}(\sqrt{2})^{3}=2 \sqrt{2}
$$

Evaluating $f(x)$ at $x=\sqrt{6}$ and taking the limit of $f(x)$ as x approaches $x=0$ we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(3 x-\frac{1}{2} x^{3}\right)=0 \\
f(\sqrt{6}) & =3(\sqrt{6})-\frac{1}{2}(\sqrt{6})^{3}=0
\end{aligned}
$$

both of which are smaller than $2 \sqrt{2}$. We conclude that the volume is an absolute maximum at $x=\sqrt{2}$ and that the resulting volume is $2 \sqrt{2} \mathrm{~m}^{3}$.

Math 180, Exam 2, Study Guide Problem 11 Solution

11. Use the Newton approximation method in order to find x_{2} as an estimate for the positive root of the equation $x^{2}-5=0$ when $x_{0}=5$.

Solution: The Newton's method formula to compute x_{1} is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

where $f(x)=x^{2}-5$. The derivative $f^{\prime}(x)$ is $f^{\prime}(x)=2 x$. Plugging $x_{0}=5$ into the formula we get:

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{x_{0}^{2}-5}{2 x_{0}} \\
& x_{1}=5-\frac{5^{2}-5}{2(5)} \\
& x_{1}=5-\frac{20}{10} \\
& x_{1}=3
\end{aligned}
$$

The Newton's method formula to compute x_{2} is

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

Plugging $x_{1}=3$ into the formula we get:

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{x_{1}^{2}-5}{2 x_{1}} \\
& x_{2}=3-\frac{3^{2}-5}{2(3)} \\
& x_{2}=3-\frac{4}{6} \\
& x_{2}=\frac{7}{3}
\end{aligned}
$$

Math 180, Exam 2, Study Guide Problem 12 Solution

12. Use L'Hôpital's Rule in order to compute the following limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (3 x+1)}{\ln (5 x+1)} \quad \lim _{x \rightarrow 0^{+}} x \ln x \quad \lim _{x \rightarrow 0} \frac{e^{3 x}-1}{\tan x} \\
& \lim _{x \rightarrow 4}\left(\frac{1}{\sqrt{x}-2}-\frac{4}{x-4}\right) \quad \lim _{x \rightarrow+\infty} \frac{e^{x}}{x+\ln x}
\end{aligned}
$$

Solution: Upon substituting $x=0$ into the function $\frac{\ln (3 x+1)}{\ln (5 x+1)}$ we get

$$
\frac{\ln (3(0)+1)}{\ln (5(0)+1)}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (3 x+1)}{\ln (5 x+1)} & \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{(\ln (3 x+1))^{\prime}}{(\ln (5 x+1))^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{3 x+1} \cdot 3}{\frac{1}{5 x+1} \cdot 5} \\
& =\lim _{x \rightarrow 0} \frac{3}{5} \cdot \frac{5 x+1}{3 x+1} \\
& =\frac{3}{5} \cdot \frac{5(0)+1}{3(0)+1} \\
& =\frac{3}{5}
\end{aligned}
$$

As $x \rightarrow 0^{+}$we find that $x \ln x \rightarrow 0 \cdot(-\infty)$ which is indeterminate. However, it is not of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which is required to use L'Hôpital's Rule. To get the limit into one of the two required forms, we rewrite $x \ln x$ as follows:

$$
x \ln x=\frac{\ln x}{\frac{1}{x}}
$$

As $x \rightarrow 0^{+}$, we find that $\frac{\ln x}{1 / x} \rightarrow \frac{-\infty}{\infty}$. We can now use L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

Upon substituting $x=0$ into the function $\frac{e^{3 x}-1}{\tan x}$ we get

$$
\frac{e^{3(0)}-1}{\tan 0}=\frac{0}{0}
$$

which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{3 x}-1}{\tan x} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{\left(e^{3 x}-1\right)^{\prime}}{(\tan x)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{3 e^{3 x}}{\sec ^{2} x} \\
&=\lim _{x \rightarrow 0} 3 e^{3 x} \cos ^{2} x \\
&=3 e^{3(0)} \cos ^{2} 0 \\
&=3
\end{aligned}
$$

Upon substituting $x=4$ into the function $\frac{1}{\sqrt{x}-2}-\frac{4}{x-4}$ we get

$$
\frac{1}{\sqrt{4}-2}-\frac{4}{4-4}=\infty-\infty
$$

which is indeterminate. In order to use L'Hôpital's Rule we need the limit to be of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. To get the limit into one of these forms, we rewrite the function as follows:

$$
\begin{aligned}
\frac{1}{\sqrt{x}-2}-\frac{4}{x-4} & =\frac{x-4-4(\sqrt{x}-2)}{(\sqrt{x}-2)(x-4)} \\
& =\frac{x-4 \sqrt{x}+4}{(\sqrt{x}-2)(x-4)} \\
& =\frac{(\sqrt{x}-2)(\sqrt{x}-2)}{(\sqrt{x}-2)(x-4)} \\
& =\frac{\sqrt{x}-2}{x-4}
\end{aligned}
$$

Upon substituting $x=4$ into the $\frac{\sqrt{x}-2}{x-4}$ we get

$$
\frac{\sqrt{4}-2}{4-4}=\frac{0}{0}
$$

which is now of the indeterminate form $\frac{0}{0}$. We can now use L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 4}\left(\frac{1}{\sqrt{x}-2}-\frac{4}{x-4}\right) & =\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)^{\prime}}{(x-4)^{\prime}} \\
& =\lim _{x \rightarrow 4} \frac{\frac{1}{2 \sqrt{x}}}{1} \\
& =\frac{1}{2 \sqrt{4}} \\
& =\frac{1}{4}
\end{aligned}
$$

As $x \rightarrow+\infty$, we find that $\frac{e^{x}}{x+\ln x} \rightarrow \frac{\infty}{\infty}$ which is indeterminate. We resolve the indeterminacy using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{e^{x}}{x+\ln x} & \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \\
& \lim _{x \rightarrow+\infty} \frac{\left(e^{x}\right)^{\prime}}{(x+\ln x)^{\prime}} \\
& =\lim _{x \rightarrow+\infty} \frac{e^{x}}{1+\frac{1}{x}} \\
& =\frac{+\infty}{1+0} \\
& =+\infty
\end{aligned}
$$

Math 180, Exam 2, Study Guide Problem 13 Solution

13. Compute the following indefinite integrals:

$$
\int\left(x^{2}-5 x+6\right) d x \quad \int \sqrt[3]{x}\left(x^{2}-\sqrt{x}\right) d x \quad \int e^{3 x} d x
$$

Solution: Using the linearity and power rules, the first integral is:

$$
\begin{aligned}
\int\left(x^{2}-5 x+6\right) d x & =\int x^{2} d x-5 \int x d x+6 \int d x \\
& =\frac{1}{3} x^{3}-5\left(\frac{1}{2} x^{2}\right)+6(x)+C \\
& =\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+6 x+C
\end{aligned}
$$

Using some algebra and the linearity and power rules, the second integral is:

$$
\begin{aligned}
\int \sqrt[3]{x}\left(x^{2}-\sqrt{x}\right) d x & =\int x^{1 / 3}\left(x^{2}-x^{1 / 2}\right) d x \\
& =\int\left(x^{7 / 3}-x^{5 / 6}\right) d x \\
& =\frac{3}{10} x^{10 / 3}-\frac{6}{11} x^{11 / 6}+C
\end{aligned}
$$

Using the rule $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$, the third integral is:

$$
\int e^{3 x} d x=\frac{1}{3} e^{3 x}+C
$$

Math 180, Exam 2, Study Guide Problem 14 Solution

14. Consider the function $f(x)=x^{2}-x$ on $[0,2]$. Compute L_{4} and R_{4}.

Solution: For each estimate, the value of Δx is:

$$
\Delta x=\frac{b-a}{N}=\frac{2-0}{4}=\frac{1}{2}
$$

The L_{4} estimate is:

$$
\begin{aligned}
L_{4} & =\Delta x\left[f(0)+f\left(\frac{1}{2}\right)+f(1)+f\left(\frac{3}{2}\right)\right] \\
& =\frac{1}{2}\left[\left(0^{2}-0\right)+\left(\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\right)+\left(1^{2}-1\right)+\left(\left(\frac{3}{2}\right)^{2}-\frac{3}{2}\right)\right] \\
& =\frac{1}{2}\left[0-\frac{1}{4}+0+\frac{3}{4}\right] \\
& =\frac{1}{4}
\end{aligned}
$$

The R_{4} estimate is:

$$
\begin{aligned}
R_{4} & =\Delta x\left[f\left(\frac{1}{2}\right)+f(1)+f\left(\frac{3}{2}\right)+f(2)\right] \\
& =\frac{1}{2}\left[\left(\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\right)+\left(1^{2}-1\right)+\left(\left(\frac{3}{2}\right)^{2}-\frac{3}{2}\right)+\left(2^{2}-2\right)\right] \\
& =\frac{1}{2}\left[-\frac{1}{4}+0+\frac{3}{4}+2\right] \\
& =\frac{5}{4}
\end{aligned}
$$

Math 180, Exam 2, Study Guide Problem 15 Solution

15. Use the Fundamental Theorem of Calculus in order to compute the following integrals:

$$
\int_{0}^{2}\left(x^{2}+x+1\right) d x \quad \int_{1}^{4} \sqrt{x} d x \quad \int_{0}^{\pi} \sin (2 x) d x
$$

Solution: The first integral has the value:

$$
\begin{aligned}
\int_{0}^{2}\left(x^{2}+x+1\right) d x & =\left[\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x\right]_{0}^{2} \\
& =\left[\frac{1}{3} 2^{3}+\frac{1}{2} 2^{2}+2\right]-\left[\frac{1}{3} 0^{3}+\frac{1}{2} 0^{2}+0\right] \\
& =\left[\frac{8}{3}+2+2\right]-[0+0+0] \\
& =\frac{20}{3}
\end{aligned}
$$

The second integral has the value:

$$
\begin{aligned}
\int_{1}^{4} \sqrt{x} d x & =\int_{1}^{4} x^{1 / 2} d x \\
& =\left[\frac{2}{3} x^{3 / 2}\right]_{1}^{4} \\
& =\frac{2}{3} 4^{3 / 2}-\frac{2}{3} 1^{3 / 2} \\
& =\frac{16}{3}-\frac{2}{3} \\
& =\frac{14}{3}
\end{aligned}
$$

The third integral has the value:

$$
\begin{aligned}
\int_{0}^{\pi} \sin (2 x) d x & =\left[-\frac{1}{2} \cos (2 x)\right]_{0}^{\pi} \\
& =\left[-\frac{1}{2} \cos (2 \pi)\right]-\left[-\frac{1}{2} \cos (2(0))\right] \\
& =\left[-\frac{1}{2}\right]-\left[-\frac{1}{2}\right] \\
& =0
\end{aligned}
$$

