Math 180, Final Exam, Fall 2007 Problem 1 Solution

1. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do **not** simplify.

(a) $x^{2007} - x^{2/3}$ (b) $(x^2 - 2x + 2)e^x$ (c) $\ln(x^2 + 4)$

Solution:

(a) Use the Power Rule.

$$(x^{2007} - x^{2/3})' = 2007x^{2006} - \frac{2}{3}x^{-1/3}$$

(b) Use the Product Rule

$$[(x^{2} - 2x + 2)e^{x}]' = (x^{2} - 2x + 2)(e^{x})' + e^{x}(x^{2} - 2x + 2)'$$
$$= \boxed{(x^{2} - 2x + 2)e^{x} + e^{x}(2x - 2)}$$

(c) Use the Chain Rule.

$$[\ln(x^{2}+4)]' = \frac{1}{x^{2}+4} \cdot (x^{2}+4)'$$
$$= \boxed{\frac{1}{x^{2}+4} \cdot 2x}$$

Math 180, Final Exam, Fall 2007 Problem 2 Solution

- 2. For the curve $y^2 + xy x^3 = 5$
 - (a) use implicit differentiation to find the derivative $\frac{dy}{dx}$,
 - (b) find the equation of the line tangent to this curve at the point (1, 2).

Solution:

(a) To find $\frac{dy}{dx}$, we use implicit differentiation.

$$y^{2} + xy - x^{3} = 5$$

$$\frac{d}{dx}y^{2} + \frac{d}{dx}(xy) - \frac{d}{dx}x^{3} = \frac{d}{dx}5$$

$$2y\frac{dy}{dx} + \left(x\frac{dy}{dx} + y\right) - 3x^{2} = 0$$

$$2y\frac{dy}{dx} + x\frac{dy}{dx} = 3x^{2} - y$$

$$\frac{dy}{dx}(2y + x) = 3x^{2} - y$$

$$\frac{dy}{dx} = \boxed{\frac{3x^{2} - y}{2y + x}}$$

(b) The value of $\frac{dy}{dx}$ at (1,2) is the slope of the tangent line at the point (1,2).

$$\left. \frac{dy}{dx} \right|_{(1,2)} = \frac{3(1)^2 - 2}{2(2) + 1} = \frac{1}{5}$$

An equation for the tangent line is then:

$$y - 2 = \frac{1}{5}(x - 1)$$

Math 180, Final Exam, Fall 2007 Problem 3 Solution

3. Use calculus to find the exact x-coordinates of any local maxima, local minima, and inflection points of the function $f(x) = 3x^5 - 20x^3 + 14$.

Solution: The critical points of f(x) are the values of x for which either f'(x) does not exist or f'(x) = 0. Since f(x) is a polynomial, f'(x) exists for all $x \in \mathbb{R}$ so the only critical points are solutions to f'(x) = 0.

$$f'(x) = 0$$

(3x⁵ - 20x³ + 14)' = 0
15x⁴ - 60x² = 0
15x²(x² - 4) = 0
15x²(x - 2)(x + 2) = 0
x = 0, x = \pm 2

Thus, x = 0 and $x = \pm 2$ are the critical points of f. We will use the First Derivative Test to classify the points as either local maxima or a local minima. We take the domain of f(x) and split it into the intervals $(-\infty, -2)$, (-2, 0), (0, 2), and $(2, \infty)$ and then evaluate f'(x) at a test point in each interval.

Interval	Test Number, c	f'(c)	Sign of $f'(c)$
$(-\infty, -2)$	-3	675	+
(-2,0)	-1	-45	_
(0, 2)	1	-45	_
$(2,\infty)$	3	675	+

Since the sign of f'(x) changes sign from + to - at x = -2, the point f(-2) = 78 is a local maximum and since the sign of f'(x) changes from - to + at x = 2, the point f(2) = -50 is a local minimum. The sign of f'(x) does not change at x = 0 so f(0) = 0 is neither a local maximum nor a local minimum.

The critical points of f(x) are the values of x where f''(x) changes sign. To determine these we first find the values of x for which f''(x) = 0.

$$f''(x) = 0$$

(15x⁴ - 60x²)' = 0
60x³ - 120x = 0
60x(x² - 2) = 0
x = 0, x = \pm\sqrt{2}

We now take the domain of f(x) and split it into the intervals $(-\infty, -\sqrt{2}), (-\sqrt{2}, 0), (0, \sqrt{2}),$ and $(\sqrt{2}, \infty)$ and then evaluate f''(x) at a test point in each interval.

Interval	Test Number, c	f''(c)	Sign of $f''(c)$
$(-\infty, -\sqrt{2})$	-2	-240	—
$(-\sqrt{2},0)$	-1	60	+
$(0,\sqrt{2})$	1	-60	—
$(\sqrt{2},\infty)$	2	240	+

We see that f''(x) changes sign at x = 0 and $x = \pm \sqrt{2}$. Thus, these are inflection points.

Math 180, Final Exam, Fall 2007 Problem 4 Solution

4. Find

$$\lim_{x \to 0} \frac{e^x - x - 1}{3x^2}$$

Explain how you obtain your answer.

Solution: Upon substituting x = 0 into the function we find that

$$\frac{e^x - x - 1}{3x^2} = \frac{e^0 - 0 - 1}{3(0)^2} = \frac{0}{0}$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$\lim_{x \to 0} \frac{e^x - x - 1}{3x^2} \stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{(e^x - x - 1)'}{(3x^2)'} = \lim_{x \to 0} \frac{e^x - 1}{6x}$$

Substituting x = 0 gives us the indeterminate form $\frac{0}{0}$ again. Thus, we apply L'Hôpital's Rule one more time.

$$\lim_{x \to 0} \frac{e^x - 1}{6x} \stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{(e^x - 1)'}{(6x)'}$$
$$= \lim_{x \to 0} \frac{e^x}{6}$$
$$= \frac{e^0}{6}$$
$$= \boxed{\frac{1}{6}}$$

Math 180, Final Exam, Fall 2007 Problem 5 Solution

5. An electrical company at point A needs to run a wire from a generator to a factory that is on the other side of a one mile wide river and 10 miles downstream at a point C. It costs \$600 per mile to run the wire on towers across the river and \$400 per mile to run the wire over land along the river. The wire will cross the river from A to a point X and then travel over land from X to C. Let x be the distance from B to X.

- (a) Find the total cost as a function f(x) of the variable x.
- (b) Use calculus to find the value of x that minimizes the cost.

Solution:

(a) The cost of the wire is:

Cost = A to X + X to C Cost = \$600(distance from A to X) + \$400(distance from X to C) $f(x) = 600\sqrt{x^2 + 1} + 400(10 - x)$

The domain of f(x) is [0, 10].

(b) The cost is a minimum either at a critical point of f(x) or at one of the endpoints of [0, 10]. The critical points are solutions to f'(x) = 0.

$$f'(x) = 0$$

$$\left(600\sqrt{x^2 + 1} + 400(10 - x)\right)' = 0$$

$$600 \cdot \frac{1}{2}(x^2 + 1)^{-1/2} \cdot (x^2 + 1)' + 400(10 - x)' = 0$$

$$\frac{300}{\sqrt{x^2 + 1}} \cdot (2x) + 400(-1) = 0$$

$$\frac{3x}{\sqrt{x^2 + 1}} - 2 = 0$$

$$2\sqrt{x^2 + 1} = 3x$$

$$(2\sqrt{x^2 + 1})^2 = (3x)^2$$

$$4(x^2 + 1) = 9x^2$$

$$x^2 = \frac{4}{5}$$

$$x = \frac{2}{\sqrt{5}}$$

The cost at $x = \frac{2}{\sqrt{5}}$ is:

$$f\left(\frac{2}{\sqrt{5}}\right) = 200(20 + \sqrt{5})$$

The costs at the endpoints are:

$$f(0) = 4600$$
$$f(10) = 600\sqrt{101}$$

both of which are larger than $200(20 + \sqrt{5})$. Thus, the cost is an absolute minimum on [0, 10] when $x = \frac{2}{\sqrt{5}}$.

Math 180, Final Exam, Fall 2007 Problem 6 Solution

6. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do **not** simplify.

(a)
$$\frac{x^2 + 1}{x^2 + x + 1}$$
 (b) $\sin^3(5x + 2)$ (c) $\arctan\left(\frac{x}{2}\right)$

Solution:

(a) Use the Quotient Rule.

$$\left(\frac{x^2+1}{x^2+x+1}\right)' = \frac{(x^2+x+1)(x^2+1)' - (x^2+1)(x^2+x+1)'}{(x^2+x+1)^2}$$
$$= \boxed{\frac{(x^2+x+1)(2x) - (x^2+1)(2x+1)}{(x^2+x+1)^2}}$$

(b) Use the Chain Rule.

$$[\sin^3(5x+2)]' = 3\sin^2(5x+2) \cdot (5x+2)'$$
$$= \boxed{3\sin^2(5x+2) \cdot 5}$$

(c) Use the Chain Rule.

$$\left[\arctan\left(\frac{x}{2}\right)\right]' = \frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \left(\frac{x}{2}\right)'$$
$$= \boxed{\frac{1}{1 + \frac{x^2}{4}} \cdot \frac{1}{2}}$$

Math 180, Final Exam, Fall 2007 Problem 7 Solution

7.

(a) Calculate the left and right Riemann sums with three subdivisions, L_3 and R_3 , for the integral:

$$\int_0^6 f(x) \, dx$$

Some values of the function f are given in the table:

(b) If the function f is increasing, could the integral be greater than 15? Explain why or why not.

Solution:

(a) In calculating L_3 and R_3 , the value of Δx is:

$$\Delta x = \frac{b-a}{N} = \frac{6-0}{3} = 2$$

The integral estimates are then:

$$L_{3} = \Delta x \left[f(0) + f(2) + f(4) \right]$$

= 2 [1.6 + 1.9 + 2.4]
= 11.8
$$R_{3} = \Delta x \left[f(2) + f(4) + f(6) \right]$$

= 2 [1.9 + 2.4 + 3.1]
= 14.8

(b) Since f is increasing, we know that $L_3 \leq S \leq R_3$ where S is the actual value of the integral. Since $R_3 = 14.8$, it is not possible that S > 15.

Math 180, Final Exam, Fall 2007 Problem 8 Solution

8.

- (a) Write the integral which gives the area of the region between x = 0 and x = 1, above the *x*-axis, and below the curve $y = x x^3$.
- (b) Evaluate your integral exactly to find the area.

Solution:

(a) The area of the region is given by the integral:

$$\int_0^1 (x - x^3) \, dx$$

(b) We use FTC I to evaluate the integral.

$$\int_0^1 (x - x^3) \, dx = \frac{x^2}{2} - \frac{x^4}{4} \Big|_0^1$$
$$= \left(\frac{1^2}{2} - \frac{1^4}{4}\right) - \left(\frac{0^2}{2} - \frac{0^4}{4}\right)$$
$$= \boxed{\frac{1}{4}}$$

Math 180, Final Exam, Fall 2007 Problem 9 Solution

9. Evaluate the integral $\int_0^1 \frac{1}{\sqrt{3x+1}} dx$ by finding an antiderivative.

Solution: We evaluate the integral using the substitution u = 3x + 1, $\frac{1}{3}du = dx$. The limits of integration become u = 3(0) + 1 = 1 and u = 3(1) + 1 = 4. Making these substitutions and evaluating the integral we get:

$$\int_{0}^{1} \frac{1}{\sqrt{3x+1}} dx = \frac{1}{3} \int_{1}^{4} \frac{1}{\sqrt{u}} du$$
$$= \frac{1}{3} \left[2\sqrt{u} \right]_{1}^{4}$$
$$= \frac{1}{3} \left[2\sqrt{4} - 2\sqrt{1} \right]$$
$$= \boxed{\frac{2}{3}}$$

Math 180, Final Exam, Fall 2007 Problem 10 Solution

10. The graph below represents the derivative, f'(x).

- (a) On what interval is f increasing?
- (b) On what interval is f decreasing?
- (c) For what value of x is f(x) a maximum?
- (d) What is $\int_0^5 f'(x) dx$?
- (e) What is f(5) f(0)?

Solution:

- (a) f is increasing on (0, 4) because f'(x) > 0 on this interval.
- (b) f is decreasing on (4,5) because f'(x) < 0 on this interval.
- (c) f has a local maximum at x = 4 because f'(4) = 0 and f' changes sign from + to at x = 4.
- (d) The value of $\int_0^{5} f'(x) dx$ represents the signed area between y = f(x) and the x-axis on the interval [0, 5]. Using geometry, we find that:

$$\int_0^5 f'(x) \, dx = \frac{1}{2}(4)(1) - \frac{1}{2}(1)(1) = \boxed{\frac{3}{2}}$$

assuming that the value of f'(5) is -1.

(e) The value of f(5) - f(0) is found using the fact that an antiderivative of f'(x) is f(x). That is, $\int f'(x) dx = f(x)$. Thus, from the Fundamental Theorem of Calculus, Part I we have:

$$\int_0^5 f'(x) \, dx = f(x) \Big|_0^5 = f(5) - f(0) = \boxed{\frac{3}{2}}$$