## Math 180, Final Exam, Fall 2007 Problem 1 Solution

1. Differentiate with respect to $x$. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $x^{2007}-x^{2 / 3}$
(b) $\left(x^{2}-2 x+2\right) e^{x}$
(c) $\ln \left(x^{2}+4\right)$

## Solution:

(a) Use the Power Rule.

$$
\left(x^{2007}-x^{2 / 3}\right)^{\prime}=2007 x^{2006}-\frac{2}{3} x^{-1 / 3}
$$

(b) Use the Product Rule

$$
\begin{aligned}
{\left[\left(x^{2}-2 x+2\right) e^{x}\right]^{\prime} } & =\left(x^{2}-2 x+2\right)\left(e^{x}\right)^{\prime}+e^{x}\left(x^{2}-2 x+2\right)^{\prime} \\
& =\left(x^{2}-2 x+2\right) e^{x}+e^{x}(2 x-2)
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{\left[\ln \left(x^{2}+4\right)\right]^{\prime} } & =\frac{1}{x^{2}+4} \cdot\left(x^{2}+4\right)^{\prime} \\
& =\frac{1}{x^{2}+4} \cdot 2 x
\end{aligned}
$$

## Math 180, Final Exam, Fall 2007 <br> Problem 2 Solution

2. For the curve $y^{2}+x y-x^{3}=5$
(a) use implicit differentiation to find the derivative $\frac{d y}{d x}$,
(b) find the equation of the line tangent to this curve at the point $(1,2)$.

## Solution:

(a) To find $\frac{d y}{d x}$, we use implicit differentiation.

$$
\begin{aligned}
y^{2}+x y-x^{3} & =5 \\
\frac{d}{d x} y^{2}+\frac{d}{d x}(x y)-\frac{d}{d x} x^{3} & =\frac{d}{d x} 5 \\
2 y \frac{d y}{d x}+\left(x \frac{d y}{d x}+y\right)-3 x^{2} & =0 \\
2 y \frac{d y}{d x}+x \frac{d y}{d x} & =3 x^{2}-y \\
\frac{d y}{d x}(2 y+x) & =3 x^{2}-y \\
\frac{d y}{d x} & =\frac{3 x^{2}-y}{2 y+x}
\end{aligned}
$$

(b) The value of $\frac{d y}{d x}$ at $(1,2)$ is the slope of the tangent line at the point $(1,2)$.

$$
\left.\frac{d y}{d x}\right|_{(1,2)}=\frac{3(1)^{2}-2}{2(2)+1}=\frac{1}{5}
$$

An equation for the tangent line is then:

$$
y-2=\frac{1}{5}(x-1)
$$

## Math 180, Final Exam, Fall 2007 <br> Problem 3 Solution

3. Use calculus to find the exact $x$-coordinates of any local maxima, local minima, and inflection points of the function $f(x)=3 x^{5}-20 x^{3}+14$.
Solution: The critical points of $f(x)$ are the values of $x$ for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x^{5}-20 x^{3}+14\right)^{\prime} & =0 \\
15 x^{4}-60 x^{2} & =0 \\
15 x^{2}\left(x^{2}-4\right) & =0 \\
55 x^{2}(x-2)(x+2) & =0 \\
x=0, x & = \pm 2
\end{aligned}
$$

Thus, $x=0$ and $x= \pm 2$ are the critical points of $f$. We will use the First Derivative Test to classify the points as either local maxima or a local minima. We take the domain of $f(x)$ and split it into the intervals $(-\infty,-2),(-2,0),(0,2)$, and $(2, \infty)$ and then evaluate $f^{\prime}(x)$ at a test point in each interval.

| Interval | Test Number, $c$ | $f^{\prime}(c)$ | Sign of $f^{\prime}(c)$ |
| :---: | :---: | :---: | :---: |
| $(-\infty,-2)$ | -3 | 675 | + |
| $(-2,0)$ | -1 | -45 | - |
| $(0,2)$ | 1 | -45 | - |
| $(2, \infty)$ | 3 | 675 | + |

Since the sign of $f^{\prime}(x)$ changes sign from + to - at $x=-2$, the point $f(-2)=78$ is a local maximum and since the sign of $f^{\prime}(x)$ changes from - to + at $x=2$, the point $f(2)=-50$ is a local minimum. The sign of $f^{\prime}(x)$ does not change at $x=0$ so $f(0)=0$ is neither a local maximum nor a local minimum.
The critical points of $f(x)$ are the values of $x$ where $f^{\prime \prime}(x)$ changes sign. To determine these we first find the values of $x$ for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(15 x^{4}-60 x^{2}\right)^{\prime} & =0 \\
60 x^{3}-120 x & =0 \\
60 x\left(x^{2}-2\right) & =0 \\
x=0, x & = \pm \sqrt{2}
\end{aligned}
$$

We now take the domain of $f(x)$ and split it into the intervals $(-\infty,-\sqrt{2}),(-\sqrt{2}, 0),(0, \sqrt{2})$, and $(\sqrt{2}, \infty)$ and then evaluate $f^{\prime \prime}(x)$ at a test point in each interval.

| Interval | Test Number, $c$ | $f^{\prime \prime}(c)$ | Sign of $f^{\prime \prime}(c)$ |
| :---: | :---: | :---: | :---: |
| $(-\infty,-\sqrt{2})$ | -2 | -240 | - |
| $(-\sqrt{2}, 0)$ | -1 | 60 | + |
| $(0, \sqrt{2})$ | 1 | -60 | - |
| $(\sqrt{2}, \infty)$ | 2 | 240 | + |

We see that $f^{\prime \prime}(x)$ changes sign at $x=0$ and $x= \pm \sqrt{2}$. Thus, these are inflection points.

## Math 180, Final Exam, Fall 2007 Problem 4 Solution

4. Find

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{3 x^{2}}
$$

Explain how you obtain your answer.
Solution: Upon substituting $x=0$ into the function we find that

$$
\frac{e^{x}-x-1}{3 x^{2}}=\frac{e^{0}-0-1}{3(0)^{2}}=\frac{0}{0}
$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}-x-1}{3 x^{2}} \stackrel{\stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=}}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x}-x-1\right)^{\prime}}{\left(3 x^{2}\right)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{e^{x}-1}{6 x}
\end{aligned}
$$

Substituting $x=0$ gives us the indeterminate form $\frac{0}{0}$ again. Thus, we apply L'Hôpital's Rule one more time.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{6 x} & \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{\prime}}{(6 x)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{6} \\
& =\frac{e^{0}}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

## Math 180, Final Exam, Fall 2007 <br> Problem 5 Solution

5. An electrical company at point $A$ needs to run a wire from a generator to a factory that is on the other side of a one mile wide river and 10 miles downstream at a point $C$. It costs $\$ 600$ per mile to run the wire on towers across the river and $\$ 400$ per mile to run the wire over land along the river. The wire will cross the river from $A$ to a point $X$ and then travel over land from $X$ to $C$. Let $x$ be the distance from $B$ to $X$.
(a) Find the total cost as a function $f(x)$ of the variable $x$.
(b) Use calculus to find the value of $x$ that minimizes the cost.


## Solution:

(a) The cost of the wire is:

$$
\begin{aligned}
& \text { Cost }=A \text { to } X+X \text { to } C \\
& \text { Cost }=\$ 600(\text { distance from } A \text { to } X)+\$ 400 \text { (distance from } X \text { to } C \text { ) } \\
& f(x)=600 \sqrt{x^{2}+1}+400(10-x)
\end{aligned}
$$

The domain of $f(x)$ is $[0,10]$.
(b) The cost is a minimum either at a critical point of $f(x)$ or at one of the endpoints of $[0,10]$. The critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(600 \sqrt{x^{2}+1}+400(10-x)\right)^{\prime} & =0 \\
600 \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot\left(x^{2}+1\right)^{\prime}+400(10-x)^{\prime} & =0 \\
\frac{300}{\sqrt{x^{2}+1}} \cdot(2 x)+400(-1) & =0 \\
\frac{3 x}{\sqrt{x^{2}+1}-2} & =0 \\
2 \sqrt{x^{2}+1} & =3 x \\
\left(2 \sqrt{x^{2}+1}\right)^{2} & =(3 x)^{2} \\
4\left(x^{2}+1\right) & =9 x^{2} \\
x^{2} & =\frac{4}{5} \\
x & =\frac{2}{\sqrt{5}}
\end{aligned}
$$

The cost at $x=\frac{2}{\sqrt{5}}$ is:

$$
f\left(\frac{2}{\sqrt{5}}\right)=200(20+\sqrt{5})
$$

The costs at the endpoints are:

$$
\begin{aligned}
f(0) & =4600 \\
f(10) & =600 \sqrt{101}
\end{aligned}
$$

both of which are larger than $200(20+\sqrt{5})$. Thus, the cost is an absolute minimum on $[0,10]$ when $x=\frac{2}{\sqrt{5}}$.

## Math 180, Final Exam, Fall 2007 Problem 6 Solution

6. Differentiate with respect to $x$. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $\frac{x^{2}+1}{x^{2}+x+1}$
(b) $\sin ^{3}(5 x+2)$
(c) $\arctan \left(\frac{x}{2}\right)$

## Solution:

(a) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{x^{2}+1}{x^{2}+x+1}\right)^{\prime} & =\frac{\left(x^{2}+x+1\right)\left(x^{2}+1\right)^{\prime}-\left(x^{2}+1\right)\left(x^{2}+x+1\right)^{\prime}}{\left(x^{2}+x+1\right)^{2}} \\
& =\frac{\left(x^{2}+x+1\right)(2 x)-\left(x^{2}+1\right)(2 x+1)}{\left(x^{2}+x+1\right)^{2}}
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{\left[\sin ^{3}(5 x+2)\right]^{\prime} } & =3 \sin ^{2}(5 x+2) \cdot(5 x+2)^{\prime} \\
& =3 \sin ^{2}(5 x+2) \cdot 5
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{\left[\arctan \left(\frac{x}{2}\right)\right]^{\prime} } & =\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot\left(\frac{x}{2}\right)^{\prime} \\
& =\frac{1}{1+\frac{x^{2}}{4}} \cdot \frac{1}{2}
\end{aligned}
$$

## Math 180, Final Exam, Fall 2007 Problem 7 Solution

7. 

(a) Calculate the left and right Riemann sums with three subdivisions, $L_{3}$ and $R_{3}$, for the integral:

$$
\int_{0}^{6} f(x) d x
$$

Some values of the function $f$ are given in the table:

| $x$ | 0 | 2 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1.6 | 1.9 | 2.4 | 3.1 |

(b) If the function $f$ is increasing, could the integral be greater than 15 ? Explain why or why not.

## Solution:

(a) In calculating $L_{3}$ and $R_{3}$, the value of $\Delta x$ is:

$$
\Delta x=\frac{b-a}{N}=\frac{6-0}{3}=2
$$

The integral estimates are then:

$$
\begin{aligned}
L_{3} & =\Delta x[f(0)+f(2)+f(4)] \\
& =2[1.6+1.9+2.4] \\
& =11.8 \\
R_{3} & =\Delta x[f(2)+f(4)+f(6)] \\
& =2[1.9+2.4+3.1] \\
& =14.8
\end{aligned}
$$

(b) Since $f$ is increasing, we know that $L_{3} \leq S \leq R_{3}$ where $S$ is the actual value of the integral. Since $R_{3}=14.8$, it is not possible that $S>15$.

## Math 180, Final Exam, Fall 2007 Problem 8 Solution

8. 

(a) Write the integral which gives the area of the region between $x=0$ and $x=1$, above the $x$-axis, and below the curve $y=x-x^{3}$.
(b) Evaluate your integral exactly to find the area.

## Solution:

(a) The area of the region is given by the integral:

$$
\int_{0}^{1}\left(x-x^{3}\right) d x
$$

(b) We use FTC I to evaluate the integral.

$$
\begin{aligned}
\int_{0}^{1}\left(x-x^{3}\right) d x & =\frac{x^{2}}{2}-\left.\frac{x^{4}}{4}\right|_{0} ^{1} \\
& =\left(\frac{1^{2}}{2}-\frac{1^{4}}{4}\right)-\left(\frac{0^{2}}{2}-\frac{0^{4}}{4}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

## Math 180, Final Exam, Fall 2007 <br> Problem 9 Solution

9. Evaluate the integral $\int_{0}^{1} \frac{1}{\sqrt{3 x+1}} d x$ by finding an antiderivative.

Solution: We evaluate the integral using the substitution $u=3 x+1, \frac{1}{3} d u=d x$. The limits of integration become $u=3(0)+1=1$ and $u=3(1)+1=4$. Making these substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{3 x+1}} d x & =\frac{1}{3} \int_{1}^{4} \frac{1}{\sqrt{u}} d u \\
& =\frac{1}{3}[2 \sqrt{u}]_{1}^{4} \\
& =\frac{1}{3}[2 \sqrt{4}-2 \sqrt{1}] \\
& =\frac{2}{3}
\end{aligned}
$$

# Math 180, Final Exam, Fall 2007 <br> Problem 10 Solution 

10. The graph below represents the derivative, $f^{\prime}(x)$.
(a) On what interval is $f$ increasing?
(b) On what interval is $f$ decreasing?
(c) For what value of $x$ is $f(x)$ a maximum?
(d) What is $\int_{0}^{5} f^{\prime}(x) d x$ ?
(e) What is $f(5)-f(0)$ ?


## Solution:

(a) $f$ is increasing on $(0,4)$ because $f^{\prime}(x)>0$ on this interval.
(b) $f$ is decreasing on $(4,5)$ because $f^{\prime}(x)<0$ on this interval.
(c) $f$ has a local maximum at $x=4$ because $f^{\prime}(4)=0$ and $f^{\prime}$ changes sign from + to at $x=4$.
(d) The value of $\int_{0}^{5} f^{\prime}(x) d x$ represents the signed area between $y=f(x)$ and the $x$-axis on the interval $[0,5]$. Using geometry, we find that:

$$
\int_{0}^{5} f^{\prime}(x) d x=\frac{1}{2}(4)(1)-\frac{1}{2}(1)(1)=\frac{3}{2}
$$

assuming that the value of $f^{\prime}(5)$ is -1 .
(e) The value of $f(5)-f(0)$ is found using the fact that an antiderivative of $f^{\prime}(x)$ is $f(x)$. That is, $\int f^{\prime}(x) d x=f(x)$. Thus, from the Fundamental Theorem of Calculus, Part I we have:

$$
\int_{0}^{5} f^{\prime}(x) d x=\left.f(x)\right|_{0} ^{5}=f(5)-f(0)=\frac{3}{2}
$$

