
Math 180, Final Exam, Fall 2008

Problem 1 Solution

1. Differentiate with respect to x. Write your answers showing the use of the appropriate
techniques. Do not simplify.

(a) e
x sin(x) (b) ln(

√
x + 8) (c)

x
3
− 1

x
2 + 1

Solution:

(a) Use the Product Rule.

(ex sin(x))′ = e
x(sin(x))′ + (ex)′ sin(x)

= e
x cos x + e

x sin x

(b) Use the Chain Rule.

[

ln(
√

x + 8)
]

′

=
1

√
x + 8

· (
√

x + 8)′

=
1

√
x + 8

·

(

1

2
√

x

)

(c) Use the Quotient Rule.

(

x
3
− 1

x
2 + 1

)

′

=
(x2 + 1)(x3

− 1)′ − (x3
− 1)(x2 + 1)′

(x2 + 1)2

=
(x2 + 1)(3x2) − (x3

− 1)(2x)

(x2 + 1)2
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Problem 2 Solution

2. Let f(x) = x+ x3.

(a) Find f(1), f ′(1), and f ′′(1).

(b) Find the equation of the line tangent to the graph of f at x = 1.

(c) Is f concave up or down at x = 1?

Solution:

(a) The first two derivatives of f are found using the Power Rule.

f ′(x) = 1 + 3x2, f ′′(x) = 6x

The values of f , f ′, and f ′′ at x = 1 are:

f(1) = 2, f ′(1) = 4, f ′′(1) = 6

(b) The equation of the line tangent to f at x = 1 is:

y − 2 = 4(x− 1)

(c) Since f ′′(1) = 6 > 0, we know that f is concave up at x = 1.
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Problem 3 Solution

3. For the curve x
2 + xy + y

3 = 1, use implicit differentiation to find the derivative
dy

dx

when

x = −1, y = 1.

Solution: We must find
dy

dx

using implicit differentiation.

x
2 + xy + y

3 = 1

d

dx

x
2 +

d

dx

(xy) +
d

dx

y
3 =

d

dx

1

2x +

(

x

dy

dx

+ y

)

+ 3y2
dy

dx

= 0

x

dy

dx

+ 3y2
dy

dx

= −2x − y

dy

dx

(

x + 3y2
)

= −2x − y

dy

dx

=
−2x − y

x + 3y2

The value of
dy

dx

at (−1, 1) is:

dy

dx

∣

∣

∣

∣

(−1,1)

=
−2(−1) − 1

−1 + 3(1)2
=

1

2

1
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Problem 4 Solution

4. Find an antiderivative for f(x) =
1
√

x

+
√

x, that is, find

∫
(

1
√

x

+
√

x

)

dx.

Solution: An antiderivative for f(x) is:

∫
(

1
√

x

+
√

x

)

dx =

∫

(

x
−1/2 + x

1/2
)

dx

=
x
−1/2+1

−1/2 + 1
+

x
1/2+1

1/2 + 1
+ C

= 2x1/2 +
2

3
x

3/2 + C
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Problem 5 Solution

5. For the function f(x) =
x+ 1

x2 + 3
,

(a) use calculus to find the exact x-coordinates of any local maxima and local minima of
the function

(b) find the exact values of f(x) at these points.

Solution: The critical points of f(x) are the values of x for which either f ′(x) does not exist
or f ′(x) = 0.

f ′(x) = 0
(

x+ 1

x2 + 3

)

′

= 0

(x2 + 3)(x+ 1)′ − (x+ 1)(x2 + 3)′

(x2 + 3)2
= 0

(x2 + 3)(1)− (x+ 1)(2x)

(x2 + 3)2
= 0

3− 2x− x2

(x2 + 3)2
= 0

3− 2x− x2 = 0

(3 + x)(1− x) = 0

x = 1, −3

Thus, x = 1, −3 are the critical points of f . (Note: x2 + 3 > 0 for all x.)

We will use the First Derivative Test to classify the critical points. The domain of f is
(−∞,∞). We now split the domain into the intervals (−∞,−3), (−3, 1), and (1,∞). We
then evaluate f ′(x) at a test point in each interval.

Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,−3) −4 f ′(−4) = −

5

361
−

(−3, 1) 0 f ′(0) = 1

3
+

(1,∞) 2 f ′(2) = −

5

49
−

Since f ′ changes sign from − to + at x = −3 the First Derivative Test implies that f(−3) =

−

1

6
is a local minimum and since f ′ changes sign from + to − at x = 1 the First Derivative

Test implies that f(1) =
1

2
is a local maximum.
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Problem 6 Solution

6. Find

lim
x→0

e
x
2

− cos x

x
2

Explain how you obtain your answer.

Solution: Upon substituting x = 0 into the function we find that

e
x
2

− cos x

x
2

=
e
0
− cos 0

02
=

0

0

which is indeterminate. We resolve this indeterminacy by using L’Hôpital’s Rule.

lim
x→0

e
x
2

− cos x

x
2

L
′
H

= lim
x→0

(ex
2

− cos x)′

(x2)′

= lim
x→0

2xe
x
2

+ sin x

2x

= lim
x→0

(

2xe
x
2

2x
+

sin x

2x

)

= lim
x→0

(

e
x
2

+
1

2
·
sin x

x

)

= e
0
2

+
1

2
· 1

=
3

2

Note: We used the fact that lim
x→0

sin x

x

= 1 to evaluate the limit.
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Problem 7 Solution

7. The graph of y = f(x) is below.

(a) Find

∫ 5

0

f(x) dx.

(b) If F (x) =

∫ x

0

f(t) dt, find F ′(3).

Solution:

(a) The value of

∫ 5

0

f(x) dx is the signed area between the graph of y = f(x) and the

x-axis on the interval [0, 5]. We use the additivity of integrals to break the integral
down as follows:∫ 5

0

f(x) dx =

∫ 1

0

f(x) dx +

∫ 2

1

f(x) dx +

∫ 3

2

f(x) dx +

∫ 5

3

f(x) dx

The reason for this is that the regions between y = f(x) and the x-axis on the intervals
[0, 1], [1, 2], [2, 3], and [3, 5] are either triangles or rectangles. The signed area is then:∫ 5

0

f(x) dx =

∫ 1

0

f(x) dx +

∫ 2

1

f(x) dx +

∫ 3

2

f(x) dx +

∫ 5

3

f(x) dx

= −1

2
(1)(1) +

1

2
(1)(1) + (1)(1) +

1

2
(2)(1)

= 2

(b) Using the Fundamental Theorem of Calculus, Part II we know that F ′(x) = f(x).
Then the value of F ′(3) is f(3) which is the y-coordinate of the point on the graph

when x = 3. From the graph we see that F ′(3) = f(3) = 1 .
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Problem 8 Solution

8.

(a) Write the integral which gives the area of the region between x = 0 and x = π, above
the x-axis, and below the curve y = sin(x).

(b) Evaluate your integral exactly to find the area.

Solution:

(a) The area of the region is given by the integral:

∫

π

0

sin(x) dx

(b) We use FTC I to evaluate the integral.

∫

π

0

sin(x) dx = − cos(x)
∣

∣

∣

π

0

= − cos π − (− cos 0)

= −(−1) − (−1)

= 2

1
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Problem 9 Solution

9. Evaluate the integral

∫

xe
x
2

dx.

Solution: We use the substitution u = x
2, 1

2
du = x dx. Making the substitutions and

evaluating the integral we get:

∫

xe
x
2

dx =
1

2

∫

e
u

du

=
1

2
e

u + C

=
1

2
e

x
2

+ C

1
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Problem 10 Solution

10. Find the dimensions and area of the rectangle of maximum area with corners at (0, 0),
(x, 0), and (x, y) where y = 4−x2. (The maximum will occur for a value of x with 0 < x < 2.)

Solution: The dimensions of the rectangle are x and y. Therefore, the area of the rectangle
has the equation:

Area = xy (1)

We must find an equation that relates x to y so that we can eliminate y from the area
equation. This equation is

y = 4− x2 (2)

because (x, y) must lie on this line. Plugging this into the area equation we get:

Area = x
(
4− x2

)
f(x) = 4x− x3

We seek the value of x that maximizes f(x). The interval in the problem is [0, 2] because
the upper corner of the rectangle must lie in the first quadrant.

The absolute maximum of f(x) will occur either at a critical point of f(x) in [0, 2] or at one
of the endpoints. The critical points of f(x) are solutions to f ′(x) = 0.

f ′(x) = 0(
4x− x3

)′
= 0

4− 3x2 = 0

x2 =
4

3

x =
2√
3

1



Plugging this into f(x) we get:

f

(
2√
3

)
= 4

(
2√
3

)
−

(
2√
3

)3

=
16

3
√

3

Evaluating f(x) at the endpoints x = 0 and x = 2 we get:

f(0) = 4(0)− 03 = 0

f(2) = 4(2)− 23 = 0

both of which are smaller than 16
3
√

3
. We conclude that the area is an absolute maximum at

x = 2√
3

and that the resulting area is 16
3
√

3
. The last step is to find the corresponding value

for y by plugging x = 3 into equation (2).

y = 4−
(

2√
3

)2

=
8

3

2
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