Math 180, Final Exam, Fall 2008
 Problem 1 Solution

1. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $e^{x} \sin (x)$
(b) $\ln (\sqrt{x}+8)$
(c) $\frac{x^{3}-1}{x^{2}+1}$

Solution:

(a) Use the Product Rule.

$$
\begin{aligned}
\left(e^{x} \sin (x)\right)^{\prime} & =e^{x}(\sin (x))^{\prime}+\left(e^{x}\right)^{\prime} \sin (x) \\
& =e^{x} \cos x+e^{x} \sin x
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{[\ln (\sqrt{x}+8)]^{\prime} } & =\frac{1}{\sqrt{x}+8} \cdot(\sqrt{x}+8)^{\prime} \\
& =\frac{1}{\sqrt{x}+8} \cdot\left(\frac{1}{2 \sqrt{x}}\right)
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{x^{3}-1}{x^{2}+1}\right)^{\prime} & =\frac{\left(x^{2}+1\right)\left(x^{3}-1\right)^{\prime}-\left(x^{3}-1\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)\left(3 x^{2}\right)-\left(x^{3}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Math 180, Final Exam, Fall 2008 Problem 2 Solution

2. Let $f(x)=x+x^{3}$.
(a) Find $f(1), f^{\prime}(1)$, and $f^{\prime \prime}(1)$.
(b) Find the equation of the line tangent to the graph of f at $x=1$.
(c) Is f concave up or down at $x=1$?

Solution:

(a) The first two derivatives of f are found using the Power Rule.

$$
f^{\prime}(x)=1+3 x^{2}, \quad f^{\prime \prime}(x)=6 x
$$

The values of f, f^{\prime}, and $f^{\prime \prime}$ at $x=1$ are:

$$
f(1)=2, \quad f^{\prime}(1)=4, \quad f^{\prime \prime}(1)=6
$$

(b) The equation of the line tangent to f at $x=1$ is:

$$
y-2=4(x-1)
$$

(c) Since $f^{\prime \prime}(1)=6>0$, we know that f is concave up at $x=1$.

Math 180, Final Exam, Fall 2008
 Problem 3 Solution

3. For the curve $x^{2}+x y+y^{3}=1$, use implicit differentiation to find the derivative $\frac{d y}{d x}$ when $x=-1, y=1$.

Solution: We must find $\frac{d y}{d x}$ using implicit differentiation.

$$
\begin{aligned}
x^{2}+x y+y^{3} & =1 \\
\frac{d}{d x} x^{2}+\frac{d}{d x}(x y)+\frac{d}{d x} y^{3} & =\frac{d}{d x} 1 \\
2 x+\left(x \frac{d y}{d x}+y\right)+3 y^{2} \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+3 y^{2} \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x}\left(x+3 y^{2}\right) & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{x+3 y^{2}}
\end{aligned}
$$

The value of $\frac{d y}{d x}$ at $(-1,1)$ is:

$$
\left.\frac{d y}{d x}\right|_{(-1,1)}=\frac{-2(-1)-1}{-1+3(1)^{2}}=\frac{1}{2}
$$

Math 180, Final Exam, Fall 2008 Problem 4 Solution

4. Find an antiderivative for $f(x)=\frac{1}{\sqrt{x}}+\sqrt{x}$, that is, find $\int\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right) d x$.

Solution: An antiderivative for $f(x)$ is:

$$
\begin{aligned}
\int\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right) d x & =\int\left(x^{-1 / 2}+x^{1 / 2}\right) d x \\
& =\frac{x^{-1 / 2+1}}{-1 / 2+1}+\frac{x^{1 / 2+1}}{1 / 2+1}+C \\
& =2 x^{1 / 2}+\frac{2}{3} x^{3 / 2}+C
\end{aligned}
$$

Math 180, Final Exam, Fall 2008
 Problem 5 Solution

5. For the function $f(x)=\frac{x+1}{x^{2}+3}$,
(a) use calculus to find the exact x-coordinates of any local maxima and local minima of the function
(b) find the exact values of $f(x)$ at these points.

Solution: The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(\frac{x+1}{x^{2}+3}\right)^{\prime} & =0 \\
\frac{\left(x^{2}+3\right)(x+1)^{\prime}-(x+1)\left(x^{2}+3\right)^{\prime}}{\left(x^{2}+3\right)^{2}} & =0 \\
\frac{\left(x^{2}+3\right)(1)-(x+1)(2 x)}{\left(x^{2}+3\right)^{2}} & =0 \\
\frac{3-2 x-x^{2}}{\left(x^{2}+3\right)^{2}} & =0 \\
3-2 x-x^{2} & =0 \\
(3+x)(1-x) & =0 \\
x & =1,-3
\end{aligned}
$$

Thus, $x=1,-3$ are the critical points of $f .\left(\right.$ Note: $x^{2}+3>0$ for all x.)
We will use the First Derivative Test to classify the critical points. The domain of f is $(-\infty, \infty)$. We now split the domain into the intervals $(-\infty,-3),(-3,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-3)$	-4	$f^{\prime}(-4)=-\frac{5}{361}$	-
$(-3,1)$	0	$f^{\prime}(0)=\frac{1}{3}$	+
$(1, \infty)$	2	$f^{\prime}(2)=-\frac{5}{49}$	-

Since f^{\prime} changes sign from - to + at $x=-3$ the First Derivative Test implies that $f(-3)=$ $-\frac{1}{6}$ is a local minimum and since f^{\prime} changes sign from + to - at $x=1$ the First Derivative Test implies that $f(1)=\frac{1}{2}$ is a local maximum.

Math 180, Final Exam, Fall 2008 Problem 6 Solution

6. Find

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}}
$$

Explain how you obtain your answer.
Solution: Upon substituting $x=0$ into the function we find that

$$
\frac{e^{x^{2}}-\cos x}{x^{2}}=\frac{e^{0}-\cos 0}{0^{2}}=\frac{0}{0}
$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}} & \stackrel{L^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x^{2}}-\cos x\right)^{\prime}}{\left(x^{2}\right)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{2 x e^{x^{2}}+\sin x}{2 x} \\
& =\lim _{x \rightarrow 0}\left(\frac{2 x e^{x^{2}}}{2 x}+\frac{\sin x}{2 x}\right) \\
& =\lim _{x \rightarrow 0}\left(e^{x^{2}}+\frac{1}{2} \cdot \frac{\sin x}{x}\right) \\
& =e^{0^{2}}+\frac{1}{2} \cdot 1 \\
& =\frac{3}{2}
\end{aligned}
$$

Note: We used the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ to evaluate the limit.

Math 180, Final Exam, Fall 2008
 Problem 7 Solution

7. The graph of $y=f(x)$ is below.
(a) Find $\int_{0}^{5} f(x) d x$.
(b) If $F(x)=\int_{0}^{x} f(t) d t$, find $F^{\prime}(3)$.

Solution:

(a) The value of $\int_{0}^{5} f(x) d x$ is the signed area between the graph of $y=f(x)$ and the x-axis on the interval $[0,5]$. We use the additivity of integrals to break the integral down as follows:

$$
\int_{0}^{5} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x
$$

The reason for this is that the regions between $y=f(x)$ and the x-axis on the intervals $[0,1],[1,2],[2,3]$, and $[3,5]$ are either triangles or rectangles. The signed area is then:

$$
\begin{aligned}
\int_{0}^{5} f(x) d x & =\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x \\
& =-\frac{1}{2}(1)(1)+\frac{1}{2}(1)(1)+(1)(1)+\frac{1}{2}(2)(1) \\
& =2
\end{aligned}
$$

(b) Using the Fundamental Theorem of Calculus, Part II we know that $F^{\prime}(x)=f(x)$. Then the value of $F^{\prime}(3)$ is $f(3)$ which is the y-coordinate of the point on the graph when $x=3$. From the graph we see that $F^{\prime}(3)=f(3)=1$.

Math 180, Final Exam, Fall 2008 Problem 8 Solution

8.

(a) Write the integral which gives the area of the region between $x=0$ and $x=\pi$, above the x-axis, and below the curve $y=\sin (x)$.
(b) Evaluate your integral exactly to find the area.

Solution:

(a) The area of the region is given by the integral:

$$
\int_{0}^{\pi} \sin (x) d x
$$

(b) We use FTC I to evaluate the integral.

$$
\begin{aligned}
\int_{0}^{\pi} \sin (x) d x & =-\left.\cos (x)\right|_{0} ^{\pi} \\
& =-\cos \pi-(-\cos 0) \\
& =-(-1)-(-1) \\
& =2
\end{aligned}
$$

Math 180, Final Exam, Fall 2008
 Problem 9 Solution

9. Evaluate the integral $\int x e^{x^{2}} d x$.

Solution: We use the substitution $u=x^{2}, \frac{1}{2} d u=x d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int x e^{x^{2}} d x & =\frac{1}{2} \int e^{u} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

Math 180, Final Exam, Fall 2008
 Problem 10 Solution

10. Find the dimensions and area of the rectangle of maximum area with corners at $(0,0)$, $(x, 0)$, and (x, y) where $y=4-x^{2}$. (The maximum will occur for a value of x with $0<x<2$.)

Solution: The dimensions of the rectangle are x and y. Therefore, the area of the rectangle has the equation:

$$
\begin{equation*}
\text { Area }=x y \tag{1}
\end{equation*}
$$

We must find an equation that relates x to y so that we can eliminate y from the area equation. This equation is

$$
\begin{equation*}
y=4-x^{2} \tag{2}
\end{equation*}
$$

because (x, y) must lie on this line. Plugging this into the area equation we get:

$$
\begin{aligned}
\text { Area } & =x\left(4-x^{2}\right) \\
f(x) & =4 x-x^{3}
\end{aligned}
$$

We seek the value of x that maximizes $f(x)$. The interval in the problem is $[0,2]$ because the upper corner of the rectangle must lie in the first quadrant.

The absolute maximum of $f(x)$ will occur either at a critical point of $f(x)$ in $[0,2]$ or at one of the endpoints. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(4 x-x^{3}\right)^{\prime} & =0 \\
4-3 x^{2} & =0 \\
x^{2} & =\frac{4}{3} \\
x & =\frac{2}{\sqrt{3}}
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f\left(\frac{2}{\sqrt{3}}\right)=4\left(\frac{2}{\sqrt{3}}\right)-\left(\frac{2}{\sqrt{3}}\right)^{3}=\frac{16}{3 \sqrt{3}}
$$

Evaluating $f(x)$ at the endpoints $x=0$ and $x=2$ we get:

$$
\begin{aligned}
& f(0)=4(0)-0^{3}=0 \\
& f(2)=4(2)-2^{3}=0
\end{aligned}
$$

both of which are smaller than $\frac{16}{3 \sqrt{3}}$. We conclude that the area is an absolute maximum at $x=\frac{2}{\sqrt{3}}$ and that the resulting area is $\frac{16}{3 \sqrt{3}}$. The last step is to find the corresponding value for y by plugging $x=3$ into equation (2).

$$
y=4-\left(\frac{2}{\sqrt{3}}\right)^{2}=\frac{8}{3}
$$

