Math 180, Final Exam, Fall 2010 Problem 1 Solution

1. Differentiate each function with respect to x. Leave your answer in unsimplified form.
(a) $\frac{e^{x}-x^{3}-1}{2 x}$
(b) $\ln (\cos (x))$
(c) $3^{x}+x^{3}$

Solution:

(a) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{e^{x}-x^{3}-1}{2 x}\right)^{\prime} & =\frac{(2 x)\left(e^{x}-x^{3}-1\right)^{\prime}-\left(e^{x}-x^{3}-1\right)(2 x)^{\prime}}{(2 x)^{2}} \\
& =\frac{(2 x)\left(e^{x}-3 x^{2}\right)-\left(e^{x}-x^{3}-1\right)(2)}{(2 x)^{2}}
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{[\ln (\cos (x))]^{\prime} } & =\frac{1}{\cos (x)} \cdot(\cos (x))^{\prime} \\
& =\frac{1}{\cos (x)} \cdot(-\sin (x))
\end{aligned}
$$

(c) Use the Exponential and Power Rules.

$$
\left(3^{x}+x^{3}\right)^{\prime}=(\ln 3) 3^{x}+3 x^{2}
$$

Math 180, Final Exam, Fall 2010 Problem 2 Solution

2. Suppose y is a function of x defined implicitly by the equation

$$
x+16=y^{2} x
$$

(a) Use implicit differentiation to calculate the derivative $\frac{d y}{d x}$.
(b) Find the equation of the tangent line to this curve at the point $(2,3)$.

Solution:

(a) We find $\frac{d y}{d x}$ using implicit differentiation.

$$
\begin{aligned}
x+16 & =y^{2} x \\
\frac{d}{d x}(x)+\frac{d}{d x}(16) & =\frac{d}{d x}\left(y^{2} x\right) \\
1+0 & =y^{2} \frac{d}{d x}(x)+x \frac{d}{d x}\left(y^{2}\right) \\
1 & =y^{2}(1)+x\left(2 y \frac{d y}{d x}\right) \\
1 & =y^{2}+2 x y \frac{d y}{d x} \\
2 x y \frac{d y}{d x} & =1-y^{2} \\
\frac{d y}{d x} & =\frac{1-y^{2}}{2 x y}
\end{aligned}
$$

(b) The value of $\frac{d y}{d x}$ at $(2,3)$ is the slope of the tangent line.

$$
\left.\frac{d y}{d x}\right|_{(2,3)}=\frac{1-3^{2}}{2(2)(3)}=-\frac{2}{3}
$$

An equation for the tangent line at $(2,3)$ is then:

$$
y-3=-\frac{2}{3}(x-2)
$$

Math 180, Final Exam, Fall 2010 Problem 3 Solution

3. Calculate each limit and indicate the method used:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{1-x}$
(b) $\lim _{x \rightarrow 0} \frac{x \cos (x)}{\sin (x)}$

Solution:

(a) Upon substituting $x=1$ into the function $f(x)=\frac{x^{2}-5 x+4}{1-x}$ we find that

$$
\frac{x^{2}-5 x+4}{1-x}=\frac{1^{2}-5(1)+4}{1-1}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by factoring the numerator of $f(x)$.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{1-x}=\lim _{x \rightarrow 1} \frac{(1-x)(4-x)}{1-x}=\lim _{x \rightarrow 1}(4-x)=4-1=3
$$

In the final step above we were able to plug in $x=1$ by using the fact that the function $4-x$ is continuous at $x=1$.
(b) Upon substituting $x=0$ into the function $f(x)=\frac{x \cos (x)}{\sin (x)}$ we find that

$$
\frac{x \cos (x)}{\sin (x)}=\frac{0 \cdot \cos (0)}{\sin (0)}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by rewriting the limit. Using the multiplication rule for limits:

$$
\lim _{x \rightarrow c} f(x) g(x)=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)
$$

we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \cos (x)}{\sin (x)} & =\lim _{x \rightarrow 0} \cos (x) \cdot \frac{x}{\sin (x)} \\
& =\left(\lim _{x \rightarrow 0} \cos (x)\right)\left(\lim _{x \rightarrow 0} \frac{x}{\sin (x)}\right) \\
& =\left(\lim _{x \rightarrow 0} \cos (x)\right)\left(\lim _{x \rightarrow 0} \frac{1}{\frac{\sin x}{x}}\right)
\end{aligned}
$$

We now use the quotient rule for limits:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
$$

to get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \cos (x)}{\sin (x)} & =\left(\lim _{x \rightarrow 0} \cos (x)\right)\left(\lim _{x \rightarrow 0} \frac{1}{\frac{\sin x}{x}}\right) \\
& =\left(\lim _{x \rightarrow 0} \cos (x)\right)\left(\frac{\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}\right)
\end{aligned}
$$

Finally, we use the fact that:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

to get our final answer:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \cos (x)}{\sin (x)} & =\left(\lim _{x \rightarrow 0} \cos (x)\right)\left(\frac{\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}\right) \\
& =(\cos (0)) \cdot\left(\frac{1}{1}\right) \\
& =1
\end{aligned}
$$

Math 180, Final Exam, Fall 2010 Problem 4 Solution

4.

(a) Sketch the curve $y=1+\cos (x)$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(b) Write an integral that gives the area under the curve $y=1+\cos (x)$, above the x-axis, and between $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$.
(c) Compute the integral from part (b).

Solution:

(a) A sketch of the curve is shown below.

(b) An integral that gives the area under the curve is:

$$
\text { Area }=\int_{-\pi / 2}^{\pi / 2}(1+\cos (x)) d x
$$

(c) The value of the integral is obtained as follows:

$$
\begin{aligned}
\text { Area } & =\int_{-\pi / 2}^{\pi / 2}(1+\cos (x)) d x \\
& =[x+\sin (x)]_{-\pi / 2}^{\pi / 2} \\
& =\left[\frac{\pi}{2}+\sin \left(\frac{\pi}{2}\right)\right]-\left[-\frac{\pi}{2}+\sin \left(-\frac{\pi}{2}\right)\right] \\
& =\left[\frac{\pi}{2}+1\right]-\left[-\frac{\pi}{2}-1\right] \\
& =\pi+2
\end{aligned}
$$

Math 180, Final Exam, Fall 2010 Problem 5 Solution

5. Define $f(x)=\left\{\begin{array}{ll}-x^{2}-2 x & \text { if } x \leq 0 \\ x^{3}-2 x & \text { if } x>0\end{array}\right.$.
(a) Is $f(x)$ continuous at $x=0$? Is it differentiable at $x=0$? Justify your answer.
(b) Locate all critical points of $f(x)$.
(c) Find the maximum and minimum values of $f(x)$ on the interval $[-2,2]$.

Solution:

(a) We start by computing the one-sided limits $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(x^{3}-2 x\right)=0^{3}-2(0)=0 \\
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left(-x^{2}-2 x\right)=-0^{2}-2(0)=0
\end{aligned}
$$

The one-sided limits are the same and both are equal to 0 . Thus, $\lim _{x \rightarrow 0} f(x)=0$. Since $f(x)$ is defined as $-x^{2}-2 x$ when $x=0$ we have:

$$
f(0)=-0^{2}-2(0)=0
$$

Therefore, since $\lim _{x \rightarrow 0} f(x)=f(0)=0$ we know that $f(x)$ is continuous at $x=0$.

By definition, the derivative of $f(x)$ at $x=0$ is:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
$$

In order for $f^{\prime}(0)$ to exist, the limit on the right hand side must exist which means that the one-sided limits must be the same. The one-sided limits are:

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\left.\frac{d}{d x}\left(x^{3}-2 x\right)\right|_{x=0}=\left.\left(3 x^{2}-2\right)\right|_{x=0}=-2
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\left.\frac{d}{d x}\left(-x^{2}-2 x\right)\right|_{x=0}=\left.(-2 x-2)\right|_{x=0}=-2
$$

Since the one-sided limits are the same and both are equal to -2 , we know that $f(x)$ is differentiable at $x=0$ and $f^{\prime}(0)=-2$.
(b) The critical points of $f(x)$ will occur at values of x where either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. We showed in part (a) that $f^{\prime}(0)$ exists. $f^{\prime}(x)$ exists for all other values of x. Therefore, the critical points are values of x for which $f^{\prime}(x)=0$.

On the interval $x \leq 0$ we have:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{d}{d x}\left(-x^{2}-2 x\right) & =0 \\
-2 x-2 & =0 \\
x & =-1
\end{aligned}
$$

On the interval $x>0$ we have:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{d}{d x}\left(x^{3}-2 x\right) & =0 \\
3 x^{2}-2 & =0 \\
x^{2} & =\frac{2}{3} \\
x & =\sqrt{\frac{2}{3}}
\end{aligned}
$$

(c) To find the minimum and maximum values of $f(x)$ on the interval $[-2,2]$, we evaluate $f(x)$ at $x=-2,-1, \sqrt{\frac{2}{3}}, 2$.

$$
\begin{aligned}
f(-2) & =-(-2)^{2}-2(-2)=0 \\
f(-1) & =-(-1)^{2}-2(-1)=1 \\
f\left(\sqrt{\frac{2}{3}}\right) & =\left(-\sqrt{\frac{2}{3}}\right)^{3}-2\left(\sqrt{\frac{2}{3}}\right)=-\frac{4}{3}\left(\sqrt{\frac{2}{3}}\right) \\
f(2) & =2^{3}-2(2)=4
\end{aligned}
$$

The largest value is 4 and the smallest value is $-\frac{4}{3}\left(\sqrt{\frac{2}{3}}\right)$. Thus, these are the maximum and minimum values of $f(x)$, respectively.

Math 180, Final Exam, Fall 2010
 Problem 6 Solution

6. Calculate the antiderivatives:
(a) $\int\left(\frac{e^{x}+e^{-x}}{2}\right) d x$
(b) $\int\left(\frac{\cos \left(\frac{1}{x}\right)}{x^{2}}\right) d x$

Solution:

(a) We begin by splitting the integral into two integrals and pulling out the constant.

$$
\begin{aligned}
\int\left(\frac{e^{x}+e^{-x}}{2}\right) d x & =\int \frac{e^{x}}{2} d x+\int \frac{e^{-x}}{2} d x \\
& =\frac{1}{2} \int e^{x} d x+\frac{1}{2} \int e^{-x} d x
\end{aligned}
$$

Then we use the exponential rule $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$ to evaluate the integrals on the right hand side.

$$
\begin{aligned}
\int\left(\frac{e^{x}+e^{-x}}{2}\right) d x & =\frac{1}{2} \int e^{x} d x+\frac{1}{2} \int e^{-x} d x \\
& =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}+C
\end{aligned}
$$

(b) We use the substitution $u=\frac{1}{x},-d u=\frac{1}{x^{2}} d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int\left(\frac{\cos \left(\frac{1}{x}\right)}{x^{2}}\right) d x & =\int \cos \left(\frac{1}{x}\right) \cdot \frac{1}{x^{2}} d x \\
& =\int \cos (u) \cdot(-d u) \\
& =-\int \cos (u) d u \\
& =-\sin (u)+C \\
& =-\sin \left(\frac{1}{x}\right)+C
\end{aligned}
$$

Math 180, Final Exam, Fall 2010 Problem 7 Solution

7. Let $g(x)=x e^{-x}$.
(a) Find the critical points of g and determine the intervals where g is increasing and decreasing.
(b) Find the inflection points of g and determine the intervals where g is concave up and concave down.

Solution:

(a) We begin by finding the critical points of $g(x)$. The critical points of $g(x)$ are the values of x for which either $g^{\prime}(x)$ does not exist or $g^{\prime}(x)=0$. Since $g(x)$ is the quotient of a polynomial and e^{x}, we know that $g^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $g^{\prime}(x)=0$.

$$
\begin{aligned}
g^{\prime}(x) & =0 \\
\left(x e^{-x}\right)^{\prime} & =0 \\
x\left(e^{-x}\right)^{\prime}+e^{-x}(x)^{\prime} & =0 \\
-x e^{-x}+e^{-x} & =0 \\
e^{-x}(1-x) & =0 \\
1-x & =0 \\
x & =1
\end{aligned}
$$

The domain of g is $(-\infty, \infty)$. We now split the domain into the two intervals $(-\infty, 1)$ and $(1, \infty)$. We then evaluate $g^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$g^{\prime}(c)$	Sign of $g^{\prime}(c)$
$(-\infty, 1)$	0	$g^{\prime}(0)=1$	+
$(1, \infty)$	2	$g^{\prime}(2)=-e^{-2}$	-

Using the table we conclude that g is increasing on $(-\infty, 1)$ because $f^{\prime}(x)>0$ for all $x \in(-\infty, 1)$ and that g is decreasing on $(1, \infty)$ because $f^{\prime}(x)<0$ for all $x \in(1, \infty)$.
(b) To determine the intervals of concavity we start by finding solutions to the equation $g^{\prime \prime}(x)=0$ and where $g^{\prime \prime}(x)$ does not exist. However, since $g(x)$ is the quotient of
a polynomial and e^{x} we know that $g^{\prime \prime}(x)$ will exist for all $x \in \mathbb{R}$. The solutions to $g^{\prime \prime}(x)=0$ are:

$$
\begin{aligned}
g^{\prime \prime}(x) & =0 \\
\left(e^{-x}(1-x)\right)^{\prime} & =0 \\
e^{-x}(1-x)^{\prime}+(1-x)\left(e^{-x}\right)^{\prime} & =0 \\
-e^{-x}+(1-x)\left(-e^{-x}\right) & =0 \\
e^{-x}(-1-1+x) & =0 \\
e^{-x}(-2+x) & =0 \\
-2+x & =0 \\
x & =2
\end{aligned}
$$

We now split the domain into the two intervals $(-\infty, 2)$ and $(2, \infty)$. We then evaluate $g^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$g^{\prime \prime}(c)$	Sign of $g^{\prime \prime}(c)$
$(-\infty, 2)$	1	$g^{\prime \prime}(1)=-e^{-1}$	-
$(2, \infty)$	3	$g^{\prime \prime}(3)=e^{-3}$	+

Using the table we conclude that g is concave up on $(2, \infty)$ because $g^{\prime \prime}(x)>0$ for all $x \in(2, \infty)$ and that g is concave down on $(-\infty, 2)$ because $g^{\prime \prime}(x)<0$ for all $x \in(-\infty, 2)$.

Math 180, Final Exam, Fall 2010 Problem 8 Solution

8. Use linear approximation to estimate the value of $(63)^{1 / 3}$. In your solution, clearly indicate the function whose linear approximation you are using, the point where the approximation is taken, and the linear function that you evaluate at $x=63$.

Solution: We will use the linearization formula:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

where we define $f(x)=x^{1 / 3}$ and $a=64$. The derivative of $f(x)$ is $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Evaluating $f(x)$ and $f^{\prime}(x)$ at $x=64$ we get:

$$
\begin{aligned}
f(64) & =(64)^{1 / 3}=4 \\
f^{\prime}(64) & =\frac{1}{3}(64)^{-2 / 3}=\frac{1}{48}
\end{aligned}
$$

The linearization of $f(x)$ is then:

$$
L(x)=4+\frac{1}{48}(x-64)
$$

The estimated value of $(63)^{1 / 3}$ is $L(63)$.

$$
\begin{aligned}
& f(63) \approx L(63) \\
& f(63) \approx 4+\frac{1}{48}(63-64) \\
& f(63) \approx \frac{191}{48}
\end{aligned}
$$

Math 180, Final Exam, Fall 2010 Problem 9 Solution

9. Show that there is a positive real solution of the equation $x^{2}+2=10^{x}$.

Solution: Let $f(x)=x^{2}+2-10^{x}$. First we recognize that $f(x)$ is continuous everywhere. Next, we must find an interval $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs. Let's choose $a=0$ and $b=1$.

$$
\begin{aligned}
& f(0)=0^{2}+2-10^{0}=1 \\
& f(1)=1^{2}+2-10^{1}=-7
\end{aligned}
$$

Since $f(0)>0$ and $f(1)<0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some c in the interval $(0,1)$, all of whose elements are positive numbers.

