Math 180, Final Exam, Fall 2011
 Problem 1 Solution

1. Calculate the following limits:
(a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}$
(b) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x$
(c) $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+4}$

Solution:

(a) Upon substituting $x=\frac{\pi}{2}$ we get the indeterminate form $\frac{0}{0}$. This indeterminacy is resolved using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \frac{\pi}{2}} \frac{\frac{d}{d x} 3 \sin (x) \cos (x)}{\frac{d}{d x}(\pi-2 x)}, \\
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \cos (x) \cos (x)-3 \sin (x) \sin (x)}{-2}, \\
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{3\left(\cos ^{2}(x)-\sin ^{2}(x)\right)}{-2}, \\
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}=\frac{3\left(\cos ^{2}\left(\frac{\pi}{2}\right)-\sin ^{2}\left(\frac{\pi}{2}\right)\right)}{-2}, \\
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}=\frac{3(0-1)}{-2}, \\
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sin (x) \cos (x)}{\pi-2 x}=\frac{3}{2}
\end{aligned}
$$

(b) This limit has the indeterminate form $\infty-\infty$. To resolve this indeterminacy by multiplying the function by its conjugate divided by itself.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right) \cdot\left(\frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}\right) \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty} \frac{\left(x^{2}+x\right)-x^{2}}{\sqrt{x^{2}+x}+x} \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x}
\end{aligned}
$$

This limit has the indeterminate form $\frac{\infty}{\infty}$ so it is a candidate for using L'Hôpital's rule. However, we will proceed by multiplying the function by $\frac{\frac{1}{x}}{\frac{1}{x}}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x}, \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}, \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}, \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\frac{1}{\sqrt{1+0}+1}, \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\frac{1}{2}
\end{aligned}
$$

(c) The function is continuous at $x=1$ so we can evaluate the limit by substitution.

$$
\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+4}=\frac{1^{2}+1}{1+4}=\frac{2}{5}
$$

Math 180, Final Exam, Fall 2011 Problem 2 Solution

2. Calculate the derivatives of the following functions:
(a) $\ln \left(x^{2}+e^{x}\right)$
(b) $\left(x^{2}-5 x+1\right) \sqrt{x^{4}+10}$
(c) $\frac{3 x+2}{4 x+3}$

Solution:

(a) The derivative is obtained using the logarithm and chain rules.

$$
\begin{aligned}
\frac{d}{d x} \ln \left(x^{2}+e^{x}\right) & =\frac{1}{x^{2}+e^{x}} \cdot \frac{d}{d x}\left(x^{2}+e^{x}\right) \\
& =\frac{1}{x^{2}+e^{x}} \cdot\left(2 x+e^{x}\right)
\end{aligned}
$$

(b) The derivative is obtained using the product and chain rules.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}-5 x+1\right) \sqrt{x^{4}+10} & =\left(x^{2}-5 x+1\right) \frac{d}{d x} \sqrt{x^{4}+10}+\sqrt{x^{4}+10} \frac{d}{d x}\left(x^{2}-5 x+1\right) \\
& =\left(x^{2}-5 x+1\right) \cdot \frac{1}{2 \sqrt{x^{4}+10}} \cdot \frac{d}{d x}\left(x^{4}+10\right)+\sqrt{x^{4}+10} \cdot(2 x-5) \\
& =\left(x^{2}-5 x+1\right) \cdot \frac{1}{2 \sqrt{x^{4}+10}} \cdot 4 x^{3}+\sqrt{x^{4}+10} \cdot(2 x-5)
\end{aligned}
$$

(c) The derivative is obtained using the quotient rule.

$$
\begin{aligned}
\frac{d}{d x} \frac{3 x+2}{4 x+3} & =\frac{(4 x+3) \frac{d}{d x}(3 x+2)-(3 x+2) \frac{d}{d x}(4 x+3)}{(4 x+3)^{2}} \\
& =\frac{(4 x+3) \cdot 3-(3 x+2) \cdot 4}{(4 x+3)^{2}}
\end{aligned}
$$

Math 180, Final Exam, Fall 2011
 Problem 3 Solution

3. Let $f(x)=x^{3}-6 x^{2}+9 x-5$.
(a) Find all critical points of f and classify them as local minima, local maxima, or neither.
(b) Find the intervals on which f is increasing or decreasing.
(c) Find the intervals on which f is concave up or concave down.

Solution:

(a) We begin by finding the critical points of f. The critical points of f are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, we know that $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{array}{r}
f^{\prime}(x)=0, \\
3 x^{2}-12 x+9=0, \\
x^{2}-4 x+3=0, \\
(x-1)(x-3)=0, \\
x=1, x=3 .
\end{array}
$$

We will use the First Derivative Test to classify each point. The domain of f is $(-\infty, \infty)$. We now split the domain into the three intervals $(-\infty, 1),(1,3)$, and $(3, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine if there is a sign change in the first derivative.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty, 1)$	0	$f^{\prime}(0)=9$	+
$(1,3)$	2	$f^{\prime}(2)=-3$	-
$(3, \infty)$	4	$f^{\prime}(4)=9$	+

The first derivative changes sign from + to $-\operatorname{across} x=1$. Therefore, $x=1$ corresponds to a local maximum. The first derivative changes sign from - to + across $x=3$. Therefore, $x=3$ corresponds to a local minimum.
(b) Using the table we conclude that f is increasing on $(-\infty, 1) \cup(3, \infty)$ because $f^{\prime}(x)>$ 0 for all x in these intervals and that f is decreasing on $(1,3)$ because $f^{\prime}(x)<0$ for all x in this interval.
(c) To determine the intervals of concavity we start by finding solutions to the equation $f^{\prime \prime}(x)=0$ and where $f^{\prime \prime}(x)$ does not exist. However, since $f(x)$ is a polynomial we know that $f^{\prime \prime}(x)$ will exist for all $x \in \mathbb{R}$. The solutions to $f^{\prime \prime}(x)=0$ are:

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
6 x-12 & =0, \\
x & =2 .
\end{aligned}
$$

We now split the domain into the two intervals $(-\infty, 2)$ and $(2, \infty)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty, 2)$	1	$f^{\prime \prime}(1)=-6$	-
$(2, \infty)$	3	$f^{\prime \prime}(3)=6$	+

Using the table we conclude that f is concave up on $(2, \infty)$ because $f^{\prime \prime}(x)>0$ for all x in this interval and that f is concave down on $(-\infty, 2)$ because $f^{\prime \prime}(x)<0$ for all x in this interval.

Math 180, Final Exam, Fall 2011 Problem 4 Solution

4. Let x and y be numbers in the interval $[1,5]$ with $x+y=6$.
(a) Determine the values of x and y which make $x y^{2}$ as large as possible.
(b) Determine the values of x and y which make $x y^{2}$ as small as possible.

Solution:

(a) Using the fact that $x+y=6$ we have $x=6-y$. Therefore, the function for which we seek the absolute maximum value is $f(y)=(6-y) y^{2}=6 y^{2}-y^{3}$. We begin by finding the critical points of f in the interior of the interval $[1,5]$. These will be the values of y for which $f^{\prime}(y)=0$.

$$
\begin{array}{r}
f^{\prime}(y)=0, \\
12 y-3 y^{2}=0, \\
3 y(4-y)=0, \\
y=0, y=4 .
\end{array}
$$

Since $y=0$ is outside the interval $[1,5]$, the only critical point of interest is $y=4$. We now evaluate $f(y)$ at $y=4$ and at the endpoints of the interval, $y=1$ and $y=5$.

$$
f(4)=32, \quad f(1)=5, \quad f(5)=25
$$

The largest of the above function values is 32 and it occurs when $y=4$. The corresponding value of x is $x=2$ since $x+y=6$.
(b) The smallest of the function values computed in part (a) is 5 and it occurs at $y=1$ The corresponding value of x is $x=5$ since $x+y=6$.

Math 180, Final Exam, Fall 2011 Problem 5 Solution

5. Find an anti-derivative for each of the following functions:
(a) $2 x^{3}-1$
(b) $e^{x}-e^{-x}$
(c) $\frac{2}{x+1}$

Solution:

(a) An antiderivative is found using the power rule.

$$
\int\left(2 x^{3}-1\right) d x=\frac{1}{2} x^{4}-x+C
$$

(b) An antiderivative is found using the exponential rule.

$$
\int\left(e^{x}-e^{-x}\right) d x=e^{x}+e^{-x}+C
$$

(c) An antiderivative is found using the substitution $u=x+1, d u=d x$. We get

$$
\int \frac{2}{x+1} d x=2 \int \frac{1}{u} d u=2 \ln |u|=2 \ln |x+1|+C
$$

Math 180, Final Exam, Fall 2011 Problem 6 Solution

6. Calculate the following definite integrals.
(a) $\int_{0}^{2} x \sqrt{2 x^{2}+1} d x$
(b) $\int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x$

Solution:

(a) We evaluate the integral using the substitution $u=2 x^{2}+1, \frac{1}{4} d u=x d x$. The limits of integration become $u=2(0)^{2}+1=1$ and $u=2(2)^{2}+1=9$. Making the substitutions and evaluating the integral we get

$$
\begin{aligned}
& \int_{0}^{2} x \sqrt{2 x^{2}+1} d x=\frac{1}{4} \int_{1}^{9} \sqrt{u} d u \\
& \int_{0}^{2} x \sqrt{2 x^{2}+1} d x=\frac{1}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{9}, \\
& \int_{0}^{2} x \sqrt{2 x^{2}+1} d x=\frac{1}{4}\left[\frac{2}{3}(9)^{3 / 2}-\frac{2}{3}(1)^{3 / 2}\right], \\
& \int_{0}^{2} x \sqrt{2 x^{2}+1} d x=\frac{13}{3}
\end{aligned}
$$

(b) We evaluate the integral using the substitution $u=\pi \cos (x),-\frac{1}{\pi} d u=\sin (x) d x$. The limits of integration become $u=\pi \cos (0)=\pi$ and $u=\pi \cos \left(\frac{\pi}{3}\right)=\frac{\pi}{2}$. Making the substitutions and evaluating the integral we get

$$
\begin{aligned}
& \int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x=-\frac{1}{\pi} \int_{\pi}^{\pi / 2} \cos (u) d u \\
& \int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x=\frac{1}{\pi} \int_{\pi / 2}^{\pi} \cos (u) d u \\
& \int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x=\frac{1}{\pi}[\sin (u)]_{\pi / 2}^{\pi} \\
& \int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x=\frac{1}{\pi}\left[\sin \pi-\sin \frac{\pi}{2}\right] \\
& \int_{0}^{\pi / 3} \sin (x) \cos (\pi \cos (x)) d x=-\frac{1}{\pi}
\end{aligned}
$$

Math 180, Final Exam, Fall 2011 Problem 7 Solution

7. Let $A(x)$ be the area below the curve $\sqrt{t^{3}+1}$ between $t=0$ and $t=x$.
(a) Express $A(x)$ as a definite integral.
(b) Calculate $A^{\prime}(x)$.
(c) Use the linear approximation of $A(x)$ at $x=0$ to approximate $A(0.1)$.

Solution:

(a) The area function is

$$
A(x)=\int_{0}^{x} \sqrt{t^{3}+1} d t
$$

(b) Using the Fundamental Theorem of Calculus we get

$$
A^{\prime}(x)=\sqrt{x^{3}+1}
$$

(c) The linearization of $A(x)$ about $x=0$ is the function

$$
L(x)=A(0)+A^{\prime}(0)(x-0) .
$$

We know that $A(0)=0$ and that $A^{\prime}(0)=\sqrt{0^{3}+1}=1$. Therefore, the linearization is

$$
L(x)=x
$$

The approximate value of $A(0.1)$ is $L(0.1)=0.1$.

