Math 180, Final Exam, Fall 2013
 Problem 1 Solution

1. Compute each limit or explain why it does not exist.
(a) $\lim _{x \rightarrow \pi} \frac{\cos ^{2}(x)-1}{x-\pi}$
(b) $\lim _{x \rightarrow 3} \frac{|x-3|}{x-3}$
(c) $\lim _{x \rightarrow+\infty} \frac{-3 x^{2}+2 x-1}{4+3 x+5 x^{2}}$ [Justify your answer using calculus.]

Solution:

(a) This limit is of the form $0 / 0$. Thus, L'Hopital's Rule applies.

$$
\lim _{x \rightarrow \pi} \frac{\cos ^{2}(x)-1}{x-\pi}=\lim _{x \rightarrow \pi} \frac{\left(\cos ^{2}(x)-1\right)^{\prime}}{(x-\pi)^{\prime}}=\lim _{x \rightarrow \pi} \frac{2 \cos (x) \cdot(-\sin (x))}{1}=\frac{2 \cos (\pi) \cdot(-\sin (\pi))}{1}=0
$$

(b) The function $f(x)=|x-3| /(x-3)$ may be rewritten as

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } x>3 \\
-1 & \text { if } x<3
\end{aligned}\right.
$$

Thus, the one-sided limits are

$$
\lim _{x \rightarrow 3^{+}} f(x)=1, \quad \lim _{x \rightarrow 3^{-}} f(x)=-1
$$

Since the one-sided limits are different, the limit does not exist.
(c) This limit is of the form $-\infty / \infty$. Thus, L'Hopital's Rule applies. In fact, it must be applied twice.

$$
\lim _{x \rightarrow+\infty} \frac{-3 x^{2}+2 x-1}{4+3 x+5 x^{2}}=\lim _{x \rightarrow+\infty} \frac{-6 x+2}{3+10 x}=\lim _{x \rightarrow+\infty} \frac{-6}{10}=\frac{-6}{10}=\frac{-3}{5}
$$

Math 180, Final Exam, Fall 2013 Problem 2 Solution

2. Compute the derivative of each function below. Do not simplify your answer.
(a) $x^{9} e^{2 x}$
(b) $\log _{5}(4 x+2)$
(c) $\arcsin (1 / x)$

Solution:

(a) The Product Rule yields

$$
\frac{d}{d x} x^{9} e^{2 x}=9 x^{8} e^{2 x}+2 x^{9} e^{2 x}
$$

(b) The logarithm and Chain Rules yield

$$
\frac{d}{d x} \log _{5}(4 x+2)=\frac{1}{\ln (5)} \cdot \frac{1}{4 x+2} \cdot 4
$$

(c) The rule for $\arcsin (x)$ and the Chain Rule yield

$$
\frac{d}{d x} \arcsin (1 / x)=\frac{1}{\sqrt{1-(1 / x)^{2}}} \cdot\left(-\frac{1}{x^{2}}\right)
$$

Math 180, Final Exam, Fall 2013
 Problem 3 Solution

3. Compute the indefinite integrals.
(a) $\int(2 x+1)^{3} d x$
(b) $\int\left(\frac{\ln (x)}{x}+e^{10 x}\right) d x$

Solution:

(a) Let $u=2 x+1$. Then $d u=2 d x$ and $\frac{1}{2} d u=d x$. The substitution yields

$$
\int(2 x+1)^{3} d x=\int u^{3} \cdot \frac{1}{2} d u=\frac{1}{2} \int u^{3} d u=\frac{1}{2} \cdot \frac{1}{4} u^{4}+C=\frac{1}{8}(2 x+1)^{4}+C
$$

(b) The sum rule yields

$$
\int\left(\frac{\ln (x)}{x}+e^{10 x}\right) d x=\int \frac{\ln (x)}{x} d x+\int e^{10 x} d x
$$

Letting $u=\ln (x)$ in the first integral yields $d u=\frac{1}{x} d x$. Thus,

$$
\int \frac{\ln (x)}{x} d x+\int e^{10 x} d x=\int u d u+\int e^{10 x} d x=\frac{1}{2} u^{2}+\frac{1}{10} e^{10 x}+C=\frac{1}{2}(\ln (x))^{2}+\frac{1}{10} e^{10 x}+C
$$

Math 180, Final Exam, Fall 2013
 Problem 4 Solution

4. Compute the definite integrals. Simplify your answers.
(a) $\int_{0}^{1} \frac{5 x}{1+x^{2}} d x$
(b) $\int_{-1}^{1} \frac{7}{1+x^{2}} d x$

Solution:

(a) Letting $u=1+x^{2}$ we have $d u=2 x d x$ which yields $\frac{1}{2} d u=x d x$. The limits of integration become $u=1+0^{2}=1$ and $u=1+1^{2}+1=2$. The integral becomes:

$$
\int_{0}^{1} \frac{5 x}{1+x^{2}} d x=\int_{1}^{2} \frac{5}{u} \cdot \frac{1}{2} d u=\frac{5}{2} \int_{1}^{2} \frac{1}{u} d u=\frac{5}{2}[\ln |u|]_{1}^{2}=\frac{5}{2} \ln (2)
$$

(b) The integrand is an even function. That is, $f(-x)=f(x)$. Therefore, the integral is:

$$
\int_{-1}^{1} \frac{7}{1+x^{2}} d x=2 \int_{0}^{1} \frac{7}{1+x^{2}} d x=2[7 \arctan (x)]_{0}^{1}=14 \arctan (1)=14 \cdot \frac{\pi}{4}=\frac{7 \pi}{2}
$$

Math 180, Final Exam, Fall 2013
 Problem 5 Solution

5. A square piece of sheet metal measuring 12 inches by 12 inches is to form a box with a square base and no top by cutting the side length x from each corner, and then folding up the remaining sides. [See the picture below where the black squares represent the squares of side length x that are being removed, and the square with the dotted edge represents the base.]
(a) If $V(x)$ denotes the volume of the box when squares of side length x are removed from the corners, what is a formula representing $V(x)$?
(b) What are the possible values for x ?
(c) What is the maximum possible volume of such a box? Make sure to use proper units.

Solution:

(a) The box has a square base whose sides have length $12-2 x$. The height of the box is x. Therefore, the volume is

$$
V(x)=(12-2 x)^{2} x=144 x-48 x^{2}+4 x^{3}
$$

(b) The interval is $0 \leq x \leq 6$.
(c) The critical point of f in the interval $(0,6)$ is:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
144-96 x+12 x^{2} & =0 \\
12\left(x^{2}-8 x+12\right) & =0 \\
12(x-2)(x-6) & =0 \\
x & =2
\end{aligned}
$$

The volume is 0 at both $x=0$ and $x=6$. The volume at $x=2$ is:

$$
V(2)=(12-2 \cdot 2)^{2} \cdot 2=128 \mathrm{in}^{3}
$$

Math 180, Final Exam, Fall 2013
 Problem 6 Solution

6. Consider the function $f(x)=\frac{2 x^{2}+5}{x^{2}-25}$.
(a) Find the domain of f.
(b) Find all vertical and horizontal asymptotes of f. [Justify your answers using calculus.]
(c) Find the intervals where f is increasing and the intervals where f is decreasing.
(d) Identify all local extrema of f.

Solution:

(a) The domain is $(-\infty,-5) \cup(-5,5) \cup(5, \infty)$.
(b) $x= \pm 5$ are vertical asymptotes because

$$
\lim _{x \rightarrow 5^{+}} \frac{2 x^{2}+5}{x^{2}-25}=\infty, \quad \lim _{x \rightarrow-5^{+}} \frac{2 x^{2}+5}{x^{2}-25}=-\infty
$$

$y=2$ is a horizontal asymptote because

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+5}{x^{2}-25}=2
$$

(c) To determine where f is increasing and decreasing we must find all critical points of f. The derivative of f is:

$$
f^{\prime}(x)=\frac{\left(x^{2}-25\right)(4 x)-\left(2 x^{2}+5\right)(2 x)}{\left(x^{2}-25\right)^{2}}=\frac{-110 x}{\left(x^{2}-25\right)^{2}}
$$

$f^{\prime}(x)=0$ when $x=0$. Thus, we must evaluate $f^{\prime}(x)$ at test points on the intervals $(-\infty,-5)$, $(-5,0),(0,5)$, and $(5, \infty)$.

$$
\begin{aligned}
f^{\prime}(-6) & =\frac{660}{121}>0 \\
f^{\prime}(-4) & =\frac{440}{81}>0 \\
f^{\prime}(4) & =\frac{-440}{81}<0 \\
f^{\prime}(6) & =\frac{-660}{121}<0
\end{aligned}
$$

Thus, f is increasing on $(-\infty,-5) \cup(-5,0)$ and is decreasing on $(0,5) \cup(5, \infty)$.
(d) Since f^{\prime} changes sign from + to $-\operatorname{across} x=0, f$ attains a local maximum value at $x=0$.

Math 180, Final Exam, Fall 2013 Problem 7 Solution

7. Consider the curve $e^{x y}+y=2$.
(a) Find $\frac{d y}{d x}$.
(b) Write the equation of the tangent line to the curve at the point $(0,1)$.

Solution:

(a) The derivative is computed using implicit differentiation.

$$
\begin{aligned}
\frac{d}{d x} e^{x y}+\frac{d}{d x} y & =\frac{d}{d x} 2 \\
e^{x y} \frac{d}{d x}(x y)+\frac{d y}{d x} & =0 \\
e^{x y}\left(x \frac{d y}{d x}+y\right)+\frac{d y}{d x} & =0 \\
\frac{d y}{d x}\left(x e^{x y}+1\right) & =-y e^{x y} \\
\frac{d y}{d x} & =-\frac{y e^{x y}}{x e^{x y}+1}
\end{aligned}
$$

(b) The slope of the tangent line at $(0,1)$ is:

$$
\left.\frac{d y}{d x}\right|_{(0,1)}=-\frac{1 \cdot e^{0.1}}{0 \cdot e^{0.1}+1}=-1
$$

Thus, an equation for the tangent line in point-slope form is:

$$
y=1=-(x-0)
$$

Math 180, Final Exam, Fall 2013
 Problem 8 Solution

8. Calculate $\int x \sqrt{x+4} d x$.

Solution: Let $u=x+4$. Then $d u=d x$ and $x=u-4$. Making the substitutions yields
$\int x \sqrt{x+4} d x=\int(u-4) \sqrt{u} d u=\int\left(u^{3 / 2}-4 u^{1 / 2}\right) d u=\frac{2}{5} u^{5 / 2}-\frac{8}{3} u^{3 / 2}+C=\frac{2}{5}(x+4)^{5 / 2}-\frac{8}{3}(x+4)^{3 / 2}+C$

