Math 180, Final Exam, Spring 2010 Problem 1 Solution

- 1. Differentiate the following functions:
 - (a) $f(x) = x^2 \tan(3x 2)$
 - (b) $f(x) = (x^2 + 1)^3$
 - (c) $f(x) = \ln(5 + 2\cos x)$

Solution:

(a) Use the Product and Chain Rules.

$$f'(x) = [x^{2} \tan(3x - 2)]'$$

= $x^{2} [\tan(3x - 2)]' + (x^{2})' \tan(3x - 2)$
= $x^{2} \sec^{2}(3x - 2) \cdot (3x - 2)' + 2x \tan(3x - 2)$
= $x^{2} \sec^{2}(3x - 2) \cdot (3) + 2x \tan(3x - 2)$

(b) Use the Chain Rule.

$$f'(x) = [(x^{2} + 1)^{3}]'$$

= 3(x^{2} + 1)^{2} \cdot (x^{2} + 1)'
= 3(x^{2} + 1)^{2} \cdot (2x)

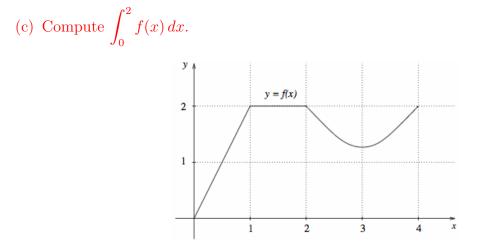
(c) Use the Chain Rule.

$$f'(x) = [\ln(5+2\cos x)]' \\ = \frac{1}{5+2\cos x} \cdot (5+2\cos x)' \\ = \boxed{\frac{1}{5+2\cos x} \cdot (-2\sin x)}$$

Math 180, Final Exam, Spring 2010 Problem 2 Solution

2. Let f(x) be the function whose graph is shown below.

- (a) Compute the average rate of change of f(x) over the interval [0, 4].
- (b) Compute f'(0.5), f'(1.5), and f'(3).



Solution:

(a) The average rate of change formula is:

average ROC =
$$\frac{f(b) - f(a)}{b - a}$$

Using the graph and the values a = 0, b = 4, we get:

average ROC =
$$\frac{f(4) - f(0)}{4 - 0} = \frac{2 - 0}{4} = \left| \frac{1}{2} \right|$$

(b) The derivative f'(x) represents the slope of the line tangent to the graph at x. From the graph we find that:

$$f'(0.5) = 2, \quad f'(1.5) = 0, \quad f'(3) = 0$$

(c) The value of $\int_0^2 f(x) dx$ represents the signed area between the curve y = f(x) and the x-axis. Using geometry, we find the value of the integral by adding the area of the triangle (the region below y = f(x) on the interval [0, 1]) to the area of the rectangle (the region below y = f(x) on the interval [1, 2]).

$$\int_{0}^{2} f(x) \, dx = \text{triangle area} + \text{rectangle area} = \frac{1}{2}(1)(2) + (1)(2) = \boxed{3}$$

Math 180, Final Exam, Spring 2010 Problem 3 Solution

3. Let $f(x) = 3x^4 - 4x^3 + 1$.

- (a) Find and classify the critical point(s) of f.
- (b) Determine the intervals where f is increasing and where f is decreasing.
- (c) Find the inflection point(s) of f.
- (d) Determine the intervals where f is concave up and where f is concave down.

Solution:

(a) The critical points of f(x) are the values of x for which either f'(x) does not exist or f'(x) = 0.

$$f'(x) = 0$$

(3x⁴ - 4x³ + 1)' = 0
12x³ - 12x² = 0
12x²(x - 1) = 0
x = 0, x = 1

Thus, x = 0 and x = 1 are the critical points of f.

The domain of f is $(-\infty, \infty)$. We now split the domain into the intervals $(-\infty, 0)$, (0, 1), and $(1, \infty)$. We then evaluate f'(x) at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	f'(c)	Sign of $f'(c)$
$(-\infty, 0)$	-1	f'(-1) = -24	—
(0,1)	$\frac{1}{2}$	$f'(\frac{1}{2}) = -\frac{3}{2}$	—
$(1,\infty)$	2	f'(2) = 24	+

Since f' changes sign from - to + at x = 1, the First Derivative Test implies that f(1) = 0 is a local minimum. However, since f' does not change sign at x = 0, f(0) = 1 is neither a local minimum nor a local maximum.

(b) Using the table above, we conclude that f is increasing on $(1, \infty)$ because f'(x) > 0 for all $x \in (1, \infty)$ and f is decreasing on $(-\infty, 0) \cup (0, 1)$ because f'(x) < 0 for all $x \in (-\infty, 0) \cup (0, 1)$.

(c) To determine the intervals of concavity we start by finding solutions to the equation f''(x) = 0 and where f''(x) does not exist.

$$f''(x) = 0$$

(12x³ - 12x²)' = 0
36x² - 24x = 0
12x(3x - 2) = 0
x = 0, x = \frac{2}{3}

We now split the domain into the intervals $(-\infty, 0)$, $(0, \frac{2}{3})$, and $(\frac{2}{3}, \infty)$. We then evaluate f''(x) at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	f''(c)	Sign of $f''(c)$
$(-\infty,0)$	-1	f''(-1) = 60	+
$(0, \frac{2}{3})$	$\frac{1}{2}$	$f''(\frac{1}{2}) = -3$	—
$(\frac{2}{3},\infty)$	1	f''(1) = 12	+

The inflection points of f(x) are the points where f''(x) changes sign. We can see in the above table that f''(x) changes sign at x = 0 and $x = \frac{2}{3}$. Therefore, $x = 0, \frac{2}{3}$ are inflection points.

(d) Using the table above, we conclude that f is concave down on $(0, \frac{2}{3})$ because f''(x) < 0 for all $x \in (0, \frac{2}{3})$ and f is concave up on $(-\infty, 0) \cup (\frac{2}{3}, \infty)$ because f''(x) > 0 for all $x \in (-\infty, 0) \cup (\frac{2}{3}, \infty)$.

Math 180, Final Exam, Spring 2010 Problem 4 Solution

4. Find the equation of the tangent line to the curve $xy + x^2y^2 = 6$ at the point (2, 1).

Solution: We must find $\frac{dy}{dx}$ using implicit differentiation.

$$xy + x^2y^2 = 6$$
$$\frac{d}{dx}(xy) + \frac{d}{dx}(x^2y^2) = \frac{d}{dx}6$$
$$\left(x\frac{dy}{dx} + y\right) + \left(2x^2y\frac{dy}{dx} + 2xy^2\right) = 0$$
$$x\frac{dy}{dx} + 2x^2y\frac{dy}{dx} = -y - 2xy^2$$
$$\frac{dy}{dx}\left(x + 2x^2y\right) = -y - 2xy^2$$
$$\frac{dy}{dx} = \frac{-y - 2xy^2}{x + 2x^2y}$$

The value of $\frac{dy}{dx}$ at (2, 1) is the slope of the tangent line.

$$\left. \frac{dy}{dx} \right|_{(2,1)} = \frac{-1 - 2(2)(1)^2}{2 + 2(2)^2(1)} = -\frac{1}{2}$$

An equation for the tangent line at (2, 1) is then:

$$y-1 = -\frac{1}{2}(x-2)$$

Math 180, Final Exam, Spring 2010 Problem 5 Solution

5. Use L'Hôpital's rule to compute: $\lim_{x \to 0} \frac{x^2 + x}{\sin x}$.

Solution: Upon substituting x = 0 into the function we find that

$$\frac{x^2 + x}{\sin x} = \frac{0^2 + 0}{\sin 0} = \frac{0}{0}$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$\lim_{x \to 0} \frac{x^2 + x}{\sin x} \stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{(x^2 + x)'}{(\sin x)'}$$
$$= \lim_{x \to 0} \frac{2x + 1}{\cos x}$$
$$= \frac{2(0) + 1}{\cos 0}$$
$$= \boxed{1}$$

Math 180, Final Exam, Spring 2010 Problem 6 Solution

6. Compute the indefinite integrals:

(a)
$$\int \frac{x-1}{\sqrt{x}} dx$$

(b)
$$\int (\sin x - \cos(3x)) dx$$

Solution:

(a)
$$\int \frac{x-1}{\sqrt{x}} dx = \int \left(\frac{x}{\sqrt{x}} - \frac{1}{\sqrt{x}}\right) dx = \int \left(x^{1/2} - x^{-1/2}\right) dx = \left[\frac{2}{3}x^{3/2} - 2x^{1/2} + C\right]$$

(b) $\int (\sin x - \cos(3x)) dx = \left[-\cos x - \frac{1}{3}\sin(3x) + C\right]$

Math 180, Final Exam, Spring 2010 Problem 7 Solution

7.

- (a) Write the integral which gives the area of the region between x = 0 and x = 2, below the curve $y = 1 e^{-x}$, and above the x axis.
- (b) Evaluate the integral exactly to find the area.

Solution:

(a) The area of the region is given by the integral:

$$\int_0^2 (1 - e^{-x}) \, dx$$

(b) We use FTC I to evaluate the integral.

$$\int_{0}^{2} (1 - e^{-x}) dx = x + e^{-x} \Big|_{0}^{2}$$
$$= (2 + e^{-2}) - (0 + e^{-0})$$
$$= \boxed{1 + e^{-2}}$$

Math 180, Final Exam, Spring 2010 Problem 8 Solution

8. Show that there is a positive real solution of the equation $x^7 = x + 1$.

Solution: Let $f(x) = x^7 - x - 1$. First we recognize that f(x) is continuous everywhere. Next, we must find an interval [a, b] such that f(a) and f(b) have opposite signs. Let's choose a = 0 and b = 2.

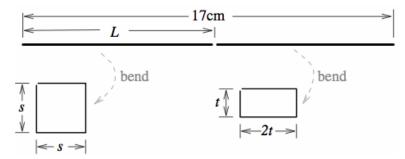
$$f(0) = 0^7 - 0 - 1 = -1$$

$$f(2) = 2^7 - 2 - 1 = 125$$

Since f(0) < 0 and f(2) > 0, the Intermediate Value Theorem tells us that f(c) = 0 for some c in the interval (0, 2), all of whose elements are positive numbers.

Math 180, Final Exam, Study Guide Problem 10 Solution

10. A piece of wire of length 17 centimeters will be cut into two pieces. The first piece of length L will be bent into a square, while the rest of the wire will be bent into a rectangle whose width is twice its height. Determine the length L that will minimize the sum of the areas enclosed by the square and the rectangle. For this value of L, also determine the total enclosed area, the side length s of the square, and the length t of the shorter side of the rectangle.



Solution: First, we recognize that:

$$L = 4s, \qquad 17 - L = 6t$$

using the fact that the right hand sides of the equations represent the perimeter of the square and rectangle, respectively. The sum of the areas is:

$$A = s^2 + 2t^2$$

Let's make A a function of L by solving the first two equations for s and t, respectively, and plugging them into the third.

$$s = \frac{L}{4}, \quad t = \frac{17 - L}{6}$$

The sum of the areas is then

$$A(L) = \left(\frac{L}{4}\right)^2 + 2\left(\frac{17-L}{6}\right)^2, \quad 0 \le L \le 17$$

There is only one critical point of A(L) and it is the solution to A'(L) = 0.

$$A'(L) = 0$$

$$2\left(\frac{L}{4}\right) \cdot \frac{1}{4} + 4\left(\frac{17-L}{6}\right) \cdot \left(-\frac{1}{6}\right) = 0$$

$$\frac{1}{16}L - \frac{1}{18}(17-L) = 0$$

$$\frac{9}{8}L - 17 + L = 0$$

$$\frac{17}{8}L = 17$$

$$L = 8$$

The corresponding values of s and t are then

$$s = \frac{L}{4} = 2,$$
 $t = \frac{17 - L}{6} = \frac{3}{2}$

and the sum of the areas is

$$A(8) = \left(\frac{8}{4}\right)^2 + 2\left(\frac{17-8}{6}\right)^2 = \frac{17}{2} = \frac{17^2}{34}$$

To ensure that the value of L above corresponds to a minimum, we check the endpoints of the domain of definition of A(L).

$$A(0) = 2\left(\frac{17}{6}\right)^2 = \frac{17^2}{18}, \qquad A(17) = \left(\frac{17}{4}\right)^2 = \frac{17^2}{16}$$

We recognize that

$$\frac{17^2}{34} < \frac{17^2}{18} < \frac{17^2}{16}$$

Clearly, A(8) is the minimum value of A(L) on the domain of definition.