Math 180, Final Exam, Spring 2010 Problem 1 Solution

1. Differentiate the following functions:
(a) $f(x)=x^{2} \tan (3 x-2)$
(b) $f(x)=\left(x^{2}+1\right)^{3}$
(c) $f(x)=\ln (5+2 \cos x)$

Solution:

(a) Use the Product and Chain Rules.

$$
\begin{aligned}
f^{\prime}(x) & =\left[x^{2} \tan (3 x-2)\right]^{\prime} \\
& =x^{2}[\tan (3 x-2)]^{\prime}+\left(x^{2}\right)^{\prime} \tan (3 x-2) \\
& =x^{2} \sec ^{2}(3 x-2) \cdot(3 x-2)^{\prime}+2 x \tan (3 x-2) \\
& =x^{2} \sec ^{2}(3 x-2) \cdot(3)+2 x \tan (3 x-2)
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[\left(x^{2}+1\right)^{3}\right]^{\prime} \\
& =3\left(x^{2}+1\right)^{2} \cdot\left(x^{2}+1\right)^{\prime} \\
& =3\left(x^{2}+1\right)^{2} \cdot(2 x)
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =[\ln (5+2 \cos x)]^{\prime} \\
& =\frac{1}{5+2 \cos x} \cdot(5+2 \cos x)^{\prime} \\
& =\frac{1}{5+2 \cos x} \cdot(-2 \sin x)
\end{aligned}
$$

Math 180, Final Exam, Spring 2010 Problem 2 Solution

2. Let $f(x)$ be the function whose graph is shown below.
(a) Compute the average rate of change of $f(x)$ over the interval $[0,4]$.
(b) Compute $f^{\prime}(0.5), f^{\prime}(1.5)$, and $f^{\prime}(3)$.
(c) Compute $\int_{0}^{2} f(x) d x$.

Solution:

(a) The average rate of change formula is:

$$
\text { average } \mathrm{ROC}=\frac{f(b)-f(a)}{b-a}
$$

Using the graph and the values $a=0, b=4$, we get:

$$
\text { average } \mathrm{ROC}=\frac{f(4)-f(0)}{4-0}=\frac{2-0}{4}=\frac{1}{2}
$$

(b) The derivative $f^{\prime}(x)$ represents the slope of the line tangent to the graph at x. From the graph we find that:

$$
f^{\prime}(0.5)=2, \quad f^{\prime}(1.5)=0, \quad f^{\prime}(3)=0
$$

(c) The value of $\int_{0}^{2} f(x) d x$ represents the signed area between the curve $y=f(x)$ and the x-axis. Using geometry, we find the value of the integral by adding the area of the triangle (the region below $y=f(x)$ on the interval $[0,1])$ to the area of the rectangle (the region below $y=f(x)$ on the interval [1,2]).

$$
\int_{0}^{2} f(x) d x=\text { triangle area }+ \text { rectangle area }=\frac{1}{2}(1)(2)+(1)(2)=3
$$

Math 180, Final Exam, Spring 2010 Problem 3 Solution

3. Let $f(x)=3 x^{4}-4 x^{3}+1$.
(a) Find and classify the critical point(s) of f.
(b) Determine the intervals where f is increasing and where f is decreasing.
(c) Find the inflection point(s) of f.
(d) Determine the intervals where f is concave up and where f is concave down.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(3 x^{4}-4 x^{3}+1\right)^{\prime} & =0 \\
12 x^{3}-12 x^{2} & =0 \\
12 x^{2}(x-1) & =0 \\
x=0, x & =1
\end{aligned}
$$

Thus, $x=0$ and $x=1$ are the critical points of f.
The domain of f is $(-\infty, \infty)$. We now split the domain into the intervals $(-\infty, 0)$, $(0,1)$, and $(1, \infty)$. We then evaluate $f^{\prime}(x)$ at a test point in each interval to determine the intervals of monotonicity.

Interval	Test Point, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime}(-1)=-24$	-
$(0,1)$	$\frac{1}{2}$	$f^{\prime}\left(\frac{1}{2}\right)=-\frac{3}{2}$	-
$(1, \infty)$	2	$f^{\prime}(2)=24$	+

Since f^{\prime} changes sign from - to + at $x=1$, the First Derivative Test implies that $f(1)=0$ is a local minimum. However, since f^{\prime} does not change sign at $x=0, f(0)=1$ is neither a local minimum nor a local maximum.
(b) Using the table above, we conclude that f is increasing on $(1, \infty)$ because $f^{\prime}(x)>0$ for all $x \in(1, \infty)$ and f is decreasing on $(-\infty, 0) \cup(0,1)$ because $f^{\prime}(x)<0$ for all $x \in(-\infty, 0) \cup(0,1)$.
(c) To determine the intervals of concavity we start by finding solutions to the equation $f^{\prime \prime}(x)=0$ and where $f^{\prime \prime}(x)$ does not exist.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(12 x^{3}-12 x^{2}\right)^{\prime} & =0 \\
36 x^{2}-24 x & =0 \\
12 x(3 x-2) & =0 \\
x=0, x & =\frac{2}{3}
\end{aligned}
$$

We now split the domain into the intervals $(-\infty, 0),\left(0, \frac{2}{3}\right)$, and $\left(\frac{2}{3}, \infty\right)$. We then evaluate $f^{\prime \prime}(x)$ at a test point in each interval to determine the intervals of concavity.

Interval	Test Point, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime \prime}(-1)=60$	+
$\left(0, \frac{2}{3}\right)$	$\frac{1}{2}$	$f^{\prime \prime}\left(\frac{1}{2}\right)=-3$	-
$\left(\frac{2}{3}, \infty\right)$	1	$f^{\prime \prime}(1)=12$	+

The inflection points of $f(x)$ are the points where $f^{\prime \prime}(x)$ changes sign. We can see in the above table that $f^{\prime \prime}(x)$ changes sign at $x=0$ and $x=\frac{2}{3}$. Therefore, $x=0, \frac{2}{3}$ are inflection points.
(d) Using the table above, we conclude that f is concave down on $\left(0, \frac{2}{3}\right)$ because $f^{\prime \prime}(x)<0$ for all $x \in\left(0, \frac{2}{3}\right)$ and f is concave up on $(-\infty, 0) \cup\left(\frac{2}{3}, \infty\right)$ because $f^{\prime \prime}(x)>0$ for all $x \in(-\infty, 0) \cup\left(\frac{2}{3}, \infty\right)$.

Math 180, Final Exam, Spring 2010 Problem 4 Solution

4. Find the equation of the tangent line to the curve $x y+x^{2} y^{2}=6$ at the point $(2,1)$.

Solution: We must find $\frac{d y}{d x}$ using implicit differentiation.

$$
\begin{aligned}
x y+x^{2} y^{2} & =6 \\
\frac{d}{d x}(x y)+\frac{d}{d x}\left(x^{2} y^{2}\right) & =\frac{d}{d x} 6 \\
\left(x \frac{d y}{d x}+y\right)+\left(2 x^{2} y \frac{d y}{d x}+2 x y^{2}\right) & =0 \\
x \frac{d y}{d x}+2 x^{2} y \frac{d y}{d x} & =-y-2 x y^{2} \\
\frac{d y}{d x}\left(x+2 x^{2} y\right) & =-y-2 x y^{2} \\
\frac{d y}{d x} & =\frac{-y-2 x y^{2}}{x+2 x^{2} y}
\end{aligned}
$$

The value of $\frac{d y}{d x}$ at $(2,1)$ is the slope of the tangent line.

$$
\left.\frac{d y}{d x}\right|_{(2,1)}=\frac{-1-2(2)(1)^{2}}{2+2(2)^{2}(1)}=-\frac{1}{2}
$$

An equation for the tangent line at $(2,1)$ is then:

$$
y-1=-\frac{1}{2}(x-2)
$$

Math 180, Final Exam, Spring 2010 Problem 5 Solution

5. Use L'Hôpital's rule to compute: $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin x}$.

Solution: Upon substituting $x=0$ into the function we find that

$$
\frac{x^{2}+x}{\sin x}=\frac{0^{2}+0}{\sin 0}=\frac{0}{0}
$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin x} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \\
& \lim _{x \rightarrow 0} \frac{\left(x^{2}+x\right)^{\prime}}{(\sin x)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{2 x+1}{\cos x} \\
&=\frac{2(0)+1}{\cos 0} \\
&=1
\end{aligned}
$$

Math 180, Final Exam, Spring 2010 Problem 6 Solution

6. Compute the indefinite integrals:
(a) $\int \frac{x-1}{\sqrt{x}} d x$
(b) $\int(\sin x-\cos (3 x)) d x$

Solution:

(a) $\int \frac{x-1}{\sqrt{x}} d x=\int\left(\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}}\right) d x=\int\left(x^{1 / 2}-x^{-1 / 2}\right) d x=\frac{2}{3} x^{3 / 2}-2 x^{1 / 2}+C$
(b) $\int(\sin x-\cos (3 x)) d x=-\cos x-\frac{1}{3} \sin (3 x)+C$

Math 180, Final Exam, Spring 2010 Problem 7 Solution

7.

(a) Write the integral which gives the area of the region between $x=0$ and $x=2$, below the curve $y=1-e^{-x}$, and above the x axis.
(b) Evaluate the integral exactly to find the area.

Solution:

(a) The area of the region is given by the integral:

$$
\int_{0}^{2}\left(1-e^{-x}\right) d x
$$

(b) We use FTC I to evaluate the integral.

$$
\begin{aligned}
\int_{0}^{2}\left(1-e^{-x}\right) d x & =x+\left.e^{-x}\right|_{0} ^{2} \\
& =\left(2+e^{-2}\right)-\left(0+e^{-0}\right) \\
& =1+e^{-2}
\end{aligned}
$$

Math 180, Final Exam, Spring 2010 Problem 8 Solution

8. Show that there is a positive real solution of the equation $x^{7}=x+1$.

Solution: Let $f(x)=x^{7}-x-1$. First we recognize that $f(x)$ is continuous everywhere. Next, we must find an interval $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs. Let's choose $a=0$ and $b=2$.

$$
\begin{aligned}
& f(0)=0^{7}-0-1=-1 \\
& f(2)=2^{7}-2-1=125
\end{aligned}
$$

Since $f(0)<0$ and $f(2)>0$, the Intermediate Value Theorem tells us that $f(c)=0$ for some c in the interval $(0,2)$, all of whose elements are positive numbers.

Math 180, Final Exam, Study Guide
 Problem 10 Solution

10. A piece of wire of length 17 centimeters will be cut into two pieces. The first piece of length L will be bent into a square, while the rest of the wire will be bent into a rectangle whose width is twice its height. Determine the length L that will minimize the sum of the areas enclosed by the square and the rectangle. For this value of L, also determine the total enclosed area, the side length s of the square, and the length t of the shorter side of the rectangle.

Solution: First, we recognize that:

$$
L=4 s, \quad 17-L=6 t
$$

using the fact that the right hand sides of the equations represent the perimeter of the square and rectangle, respectively. The sum of the areas is:

$$
A=s^{2}+2 t^{2}
$$

Let's make A a function of L by solving the first two equations for s and t, respectively, and plugging them into the third.

$$
s=\frac{L}{4}, \quad t=\frac{17-L}{6}
$$

The sum of the areas is then

$$
A(L)=\left(\frac{L}{4}\right)^{2}+2\left(\frac{17-L}{6}\right)^{2}, \quad 0 \leq L \leq 17
$$

There is only one critical point of $A(L)$ and it is the solution to $A^{\prime}(L)=0$.

$$
\begin{aligned}
A^{\prime}(L) & =0 \\
2\left(\frac{L}{4}\right) \cdot \frac{1}{4}+4\left(\frac{17-L}{6}\right) \cdot\left(-\frac{1}{6}\right) & =0 \\
\frac{1}{16} L-\frac{1}{18}(17-L) & =0 \\
\frac{9}{8} L-17+L & =0 \\
\frac{17}{8} L & =17 \\
L & =8
\end{aligned}
$$

The corresponding values of s and t are then

$$
s=\frac{L}{4}=2, \quad t=\frac{17-L}{6}=\frac{3}{2}
$$

and the sum of the areas is

$$
A(8)=\left(\frac{8}{4}\right)^{2}+2\left(\frac{17-8}{6}\right)^{2}=\frac{17}{2}=\frac{17^{2}}{34}
$$

To ensure that the value of L above corresponds to a minimum, we check the endpoints of the domain of definition of $A(L)$.

$$
A(0)=2\left(\frac{17}{6}\right)^{2}=\frac{17^{2}}{18}, \quad A(17)=\left(\frac{17}{4}\right)^{2}=\frac{17^{2}}{16}
$$

We recognize that

$$
\frac{17^{2}}{34}<\frac{17^{2}}{18}<\frac{17^{2}}{16}
$$

Clearly, $A(8)$ is the minimum value of $A(L)$ on the domain of definition.

