Math 180, Final Exam, Spring 2011 Problem 1 Solution

1. Evaluate the following limits, or show that they do not exist.
(a) $\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}$
(b) $\lim _{x \rightarrow 0} \frac{\left|x^{2}-4\right|}{3 x+6}$

Solution:

(a) The given limit is, by definition, the derivative of the function e^{x}. Thus,

$$
\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\frac{d}{d x} e^{x}=e^{x}
$$

(b) The function $f(x)=\frac{\left|x^{2}-4\right|}{3 x+6}$ is continuous at $x=0$. Thus, we evaluate the limit using the substitution method.

$$
\lim _{x \rightarrow 0} \frac{\left|x^{2}-4\right|}{3 x+6}=\frac{\left|0^{2}-4\right|}{3(0)+6}=\frac{2}{3}
$$

Math 180, Final Exam, Spring 2011 Problem 2 Solution

2. Differentiate the following functions. Leave your answers in unsimplified form so it is clear what method you used.
(a) $\frac{x}{2+\sin (x)}$
(b) $\arctan \left(e^{x}\right)$
(c) $\ln \left(e^{x}+1\right)$

Solution:

(a) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{x}{2+\sin (x)}\right)^{\prime} & =\frac{[2+\sin (x)](x)^{\prime}-(x)[2+\sin (x)]^{\prime}}{[2+\sin (x)]^{2}} \\
& =\frac{[2+\sin (x)](1)-(x)[\cos (x)]}{[2+\sin (x)]^{2}} \\
& =\frac{2+\sin (x)-x \cos (x)}{[2+\sin (x)]^{2}}
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{\left[\arctan \left(e^{x}\right)\right]^{\prime} } & =\frac{1}{1+\left(e^{x}\right)^{2}} \cdot\left(e^{x}\right)^{\prime} \\
& =\frac{1}{1+e^{2 x}} \cdot e^{x}
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{\left[\ln \left(e^{x}+1\right)\right]^{\prime} } & =\frac{1}{e^{x}+1} \cdot\left(e^{x}+1\right)^{\prime} \\
& =\frac{1}{e^{x}+1} \cdot e^{x}
\end{aligned}
$$

Math 180, Final Exam, Spring 2011 Problem 3 Solution

3. Calculate the indefinite integrals.
(a) $\int \frac{e^{-\frac{1}{x}} d x}{x^{2}}$
(b) $\int x \sin \left(x^{2}\right) \cos \left(x^{2}\right) d x$

Solution:

(a) We use the substitution $u=-\frac{1}{x}, d u=\frac{1}{x^{2}} d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int\left(\frac{e^{-\frac{1}{x}}}{x^{2}}\right) d x & =\int e^{-\frac{1}{x}} \cdot \frac{1}{x^{2}} d x \\
& =\int e^{u} \cdot d u \\
& =e^{u}+C \\
& =e^{-\frac{1}{x}}+C
\end{aligned}
$$

(b) We use the substitution $u=\sin \left(x^{2}\right), \frac{1}{2} d u=x \cos \left(x^{2}\right) d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) \cos \left(x^{2}\right) d x & =\frac{1}{2} \int u d u \\
& =\frac{1}{4} u^{2}+C \\
& =\frac{1}{4}\left[\sin \left(x^{2}\right)\right]^{2}+C
\end{aligned}
$$

Math 180, Final Exam, Spring 2011
 Problem 4 Solution

4. Calculate the definite integrals.
(a) $\int_{0}^{\pi / 4} \sec ^{2}(x) d x$
(b) $\int_{0}^{2} \frac{x}{\left(x^{2}+2\right)^{2}} d x$

Solution:

(a) We use the Fundamental Theorem of Calculus, Part I to evaluate the integral.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec ^{2}(x) d x & =[\tan (x)]_{0}^{\pi / 4} \\
& =\tan \left(\frac{\pi}{4}\right)-\tan (0) \\
& =1
\end{aligned}
$$

(b) We use the u-substitution method and the Fundamental Theorem of Calculus, Part I to evaluate the integral. Let $u=x^{2}+2, \frac{1}{2} d u=x d x$. The limits of integration then become $u=0^{2}+2=2$ and $u=2^{2}+2=6$. Making these substitutions and evaluating the integral, we get:

$$
\begin{aligned}
\int_{0}^{2} \frac{x}{\left(x^{2}+2\right)^{2}} d x & =\frac{1}{2} \int_{2}^{6} \frac{1}{u^{2}} d u \\
& =\frac{1}{2}\left[-\frac{1}{u}\right]_{2}^{6} \\
& =\frac{1}{2}\left[-\frac{1}{6}-\left(-\frac{1}{2}\right)\right] \\
& =\frac{1}{6}
\end{aligned}
$$

Math 180, Final Exam, Spring 2011 Problem 5 Solution

5. Let $F(x)=\int_{1}^{x^{2}} \ln (t) d t$.
(a) Compute $F(-1)$.
(b) Find the derivative $F^{\prime}(x)$.

Solution:

(a) The value of $F(-1)$ is:

$$
F(-1)=\int_{1}^{(-1)^{2}} \ln (t) d t=\int_{1}^{1} \ln (t) d t=0
$$

(b) We use the Fundamental Theorem of Calculus, Part II and the Chain Rule to find $F^{\prime}(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{1}^{x^{2}} \ln (t) d t \\
& =\ln \left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\ln \left(x^{2}\right) \cdot(2 x)
\end{aligned}
$$

Math 180, Final Exam, Spring 2011
 Problem 6 Solution

6. Consider the function $f(x)=\frac{\ln (x)}{x}$ defined for $x>0$.
(a) Find the critical point(s) of f.
(b) Classify each critical point as a local minimum, local maximum, or neither. Justify your answers.
(c) Find the absolute minimum and absolute maximum of f on the interval $\left[1, e^{2}\right]$.

Solution:

(a) The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. The derivative $f^{\prime}(x)$ can be found using the quotient rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{\ln (x)}{x}\right)^{\prime} \\
& =\frac{(x)[\ln (x)]^{\prime}-\ln (x)(x)^{\prime}}{x^{2}} \\
& =\frac{x\left(\frac{1}{x}\right)-\ln (x)}{x^{2}} \\
& =\frac{1-\ln (x)}{x^{2}}
\end{aligned}
$$

$f^{\prime}(x)$ exists for all $x>0$, which is the domain of f. Therefore, the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\frac{1-\ln (x)}{x^{2}} & =0 \\
1-\ln (x) & =0 \\
\ln (x) & =1 \\
x & =e
\end{aligned}
$$

The corresponding function value is $f(e)=\frac{\ln (e)}{e}=\frac{1}{e}$. Thus, the critical point is $\left(e, \frac{1}{e}\right)$.
(b) We use the Second Derivative Test to classify the critical point. The second derivative is found using the quotient rule.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{1-\ln (x)}{x^{2}}\right)^{\prime} \\
& =\frac{\left(x^{2}\right)[1-\ln (x)]^{\prime}-[1-\ln (x)]\left(x^{2}\right)^{\prime}}{\left(x^{2}\right)^{2}} \\
& =\frac{\left(x^{2}\right)\left(-\frac{1}{x}\right)-[1-\ln (x)](2 x)}{x^{4}} \\
& =\frac{-3 x+2 x \ln (x)}{x^{4}}
\end{aligned}
$$

At the critical point, we have:

$$
f^{\prime \prime}(e)=\frac{-3 e+2 e \ln (e)}{e^{4}}=-\frac{1}{e^{3}}
$$

Since $f^{\prime \prime}(e)<0$ the Second Derivative Test implies that $f(e)=\frac{1}{e}$ is a local maximum.
(c) The absolute extrema of f will occur either at a critical point in $\left[1, e^{2}\right]$ or at one of the endpoints. From part (a), we found that the critical number of f is $x=e$. Thus, we evaluate f at $x=1, x=e$, and $x=e^{2}$.

$$
\begin{aligned}
f(1) & =\frac{\ln (1)}{1}=0 \\
f(e) & =\frac{\ln (e)}{e}=\frac{1}{e} \\
f\left(e^{2}\right) & =\frac{\ln \left(e^{2}\right)}{e^{2}}=\frac{2}{e^{2}}
\end{aligned}
$$

The absolute minimum of f on $\left[1, e^{2}\right]$ is 0 because it is the smallest of the values of f above and the absolute maximum is $\frac{1}{e}$ because it is the largest.

Math 180, Final Exam, Spring 2011
 Problem 7 Solution

7. Shown below is the graph of $f^{\prime}(x)$, the derivative of the function $f(x)$.
(a) Using the graph of $f^{\prime}(x)$ below, determine the intervals where f is increasing, decreasing, concave up, and concave down.
(b) Given that $f(0)=1$, sketch the graph of the function $f(x)$. On your graph, clearly label all maxima, minima, and inflection points.

This is the graph of the derivative of $f(x)$.

Solution:

(a) $f(x)$ is increasing on $(1,4) \cup(4,6)$ because $f^{\prime}(x)>0$ for these values of x. $f(x)$ is decreasing on $(0,1)$ because $f^{\prime}(x)<0$ for these values of $x . f(x)$ is concave up on $(0,2) \cup(4,6.5)$ because $f^{\prime}(x)$ is increasing for these values of $x . f(x)$ is concave down on $(2,4)$ because $f^{\prime}(x)$ is decreasing for these values of x.
(b) $f(x)$ has a local minimum at $x=1$ because $f^{\prime}(1)=0$ and $f^{\prime}(x)$ changes from negative to positive at $x=1$. $f(x)$ has an inflection point at $x=2$ and $x=4$ because $f^{\prime \prime}(x)=0$ and $f^{\prime \prime}(x)$ changes sign at these values of x. A rough sketch of $f(x)$ is shown below. (Note: The graph is not necessarily to scale.)

Math 180, Final Exam, Spring 2011 Problem 8 Solution

8. Consider the curve defined by the equation $x^{3}+y^{3}=x^{2}+y^{2}$.
(a) Use implicit differentiation to find the derivative $\frac{d y}{d x}$ in terms of x and y.
(b) Find an equation for the tangent line to this curve at the point $\left(\frac{5}{9}, \frac{10}{9}\right)$.

Solution:

(a) To find $\frac{d y}{d x}$, we use implicit differentiation.

$$
\begin{aligned}
x^{3}+y^{3} & =x^{2}+y^{2} \\
\frac{d}{d x} x^{3}+\frac{d}{d x} y^{3} & =\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2} \\
3 x^{2}+3 y^{2} \frac{d y}{d x} & =2 x+2 y \frac{d y}{d x} \\
3 y^{2} \frac{d y}{d x}-2 y \frac{d y}{d x} & =2 x-3 x^{2} \\
\frac{d y}{d x}\left(3 y^{2}-2 y\right) & =2 x-3 x^{2} \\
\frac{d y}{d x} & =\frac{2 x-3 x^{2}}{3 y^{2}-2 y} \\
\frac{d y}{d x} & =\frac{x}{y} \cdot \frac{2-3 x}{3 y-2}
\end{aligned}
$$

(b) The value of $\frac{d y}{d x}$ at $\left(\frac{5}{9}, \frac{10}{9}\right)$ is the slope of the tangent line at the point $\left(\frac{5}{9}, \frac{10}{9}\right)$.

$$
\left.\frac{d y}{d x}\right|_{\left(\frac{5}{9}, \frac{10}{9}\right)}=\frac{\frac{5}{9}}{\frac{10}{9}} \cdot \frac{2-3\left(\frac{5}{9}\right)}{3\left(\frac{10}{9}\right)-2}=\frac{1}{2} \cdot \frac{3}{12}=\frac{1}{8}
$$

An equation for the tangent line is then:

$$
y-\frac{10}{9}=\frac{1}{8}\left(x-\frac{5}{9}\right)
$$

Math 180, Final Exam, Spring 2011 Problem 9 Solution

9. A function g is defined on the interval $[1,3]$ by $g(x)=x^{4}-x+1$. Let $h(x)=g^{-1}(x)$ be the inverse function. Compute $h^{\prime}(15)$.

Solution: The value of $h^{\prime}(15)$ is given by the formula:

$$
h^{\prime}(15)=\frac{1}{g^{\prime}(h(15))}
$$

It isn't necessary to find a formula for $h(x)$ to find $h(15)$. We will use the fact that $g(2)=$ $2^{4}-2+1=15$ to say that $h(15)=2$ by the property of inverses. The derivative of $g(x)$ is $g^{\prime}(x)=4 x^{3}-1$. Therefore,

$$
\begin{aligned}
h^{\prime}(15) & =\frac{1}{g^{\prime}(h(15))} \\
& =\frac{1}{g^{\prime}(2)} \\
& =\frac{1}{4(2)^{3}-1} \\
& =\frac{1}{31}
\end{aligned}
$$

