Math 180, Final Exam, Study Guide Problem 1 Solution

1. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $x^{1066}+x^{1 / 2}-x^{-2}$
(b) $e^{\sqrt{x}}$
(c) $\frac{\sin (x)}{5+x^{2}}$

Solution:

(a) Use the Power Rule.

$$
\left(x^{1066}+x^{1 / 2}-x^{-2}\right)^{\prime}=1066 x^{1065}+\frac{1}{2} x^{-1 / 2}+2 x^{-3}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
\left(e^{\sqrt{x}}\right)^{\prime} & =e^{\sqrt{x}} \cdot(\sqrt{x})^{\prime} \\
& =e^{\sqrt{x}} \cdot\left(\frac{1}{2 \sqrt{x}}\right)
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{\sin (x)}{5+x^{2}}\right)^{\prime} & =\frac{\left(5+x^{2}\right)(\sin (x))^{\prime}-\sin (x)\left(5+x^{2}\right)^{\prime}}{\left(5+x^{2}\right)^{2}} \\
& =\frac{\left(5+x^{2}\right) \cos (x)-\sin (x)(2 x)}{\left(5+x^{2}\right)^{2}}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 2 Solution

2. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $e^{3 x} \cos (5 x)$
(b) $\ln \left(x^{2}+x+1\right)$
(c) $\tan \left(\frac{1}{x}\right)$

Solution:

(a) Use the Product and Chain Rules.

$$
\begin{aligned}
{\left[e^{3 x} \cos (5 x)\right]^{\prime} } & =e^{3 x}[\cos (5 x)]^{\prime}+\left(e^{3 x}\right)^{\prime} \cos (5 x) \\
& =e^{3 x}[-5 \sin (5 x)]+3 e^{3 x} \cos (5 x)
\end{aligned}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{\left[\ln \left(x^{2}+x+1\right)\right]^{\prime} } & =\frac{1}{x^{2}+x+1} \cdot\left(x^{2}+x+1\right)^{\prime} \\
& =\frac{1}{x^{2}+x+1} \cdot(2 x+1)
\end{aligned}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{\left[\tan \left(\frac{1}{x}\right)\right]^{\prime} } & =\sec ^{2}\left(\frac{1}{x}\right) \cdot\left(\frac{1}{x}\right)^{\prime} \\
& =\sec ^{2}\left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 3 Solution

3. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $x^{2005}+x^{2 / 3}$
(b) $\cos (\pi x)$
(c) $\frac{1+2 x}{3+x^{2}}$

Solution:

(a) Use the Power Rule.

$$
\left(x^{2005}+x^{2 / 3}\right)^{\prime}=2005 x^{2004}+\frac{2}{3} x^{-1 / 3}
$$

(b) Use the Chain Rule.

$$
\begin{aligned}
{[\cos (\pi x)]^{\prime} } & =-\sin (\pi x) \cdot(\pi x)^{\prime} \\
& =-\sin (\pi x) \cdot(\pi)
\end{aligned}
$$

(c) Use the Quotient Rule.

$$
\begin{aligned}
\left(\frac{1+2 x}{3+x^{2}}\right)^{\prime} & =\frac{\left(3+x^{2}\right)(1+2 x)^{\prime}-(1+2 x)\left(3+x^{2}\right)^{\prime}}{\left(3+x^{2}\right)^{2}} \\
& =\frac{\left(3+x^{2}\right)(2)-(1+2 x)(2 x)}{\left(3+x^{2}\right)^{2}}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 4 Solution

4. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $x^{2} e^{-3 x}$
(b) $\arctan (x)$
(c) $\ln (\cos (x))$

Solution:

(a) Use the Product and Chain Rules.

$$
\begin{aligned}
\left(x^{2} e^{-3 x}\right)^{\prime} & =x^{2}\left(e^{-3 x}\right)^{\prime}+\left(x^{2}\right)^{\prime} e^{-3 x} \\
& =-3 x^{2} e^{-3 x}+2 x e^{-3 x}
\end{aligned}
$$

(b) This is a basic derivative.

$$
(\arctan (x))^{\prime}=\frac{1}{1+x^{2}}
$$

(c) Use the Chain Rule.

$$
\begin{aligned}
{[\ln (\cos (x))]^{\prime} } & =\frac{1}{\cos (x)} \cdot(\cos (x))^{\prime} \\
& =\frac{1}{\cos (x)} \cdot(-\sin (x))
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 5 Solution

5. Use implicit differentiation to find the slope of the line tangent to the curve

$$
x^{2}+x y+y^{2}=7
$$

at the point $(2,1)$.
Solution: We must find $\frac{d y}{d x}$ using implicit differentiation.

$$
\begin{aligned}
x^{2}+x y+y^{2} & =7 \\
\frac{d}{d x} x^{2}+\frac{d}{d x}(x y)+\frac{d}{d x} y^{2} & =\frac{d}{d x} 7 \\
2 x+\left(x \frac{d y}{d x}+y\right)+2 y \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+2 y \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x}(x+2 y) & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{x+2 y}
\end{aligned}
$$

The value of $\frac{d y}{d x}$ at $(2,1)$ is the slope of the tangent line.

$$
\left.\frac{d y}{d x}\right|_{(2,1)}=\frac{-2(2)-1}{2+2(1)}=-\frac{5}{4}
$$

An equation for the tangent line at $(2,1)$ is then:

$$
y-1=-\frac{5}{4}(x-2)
$$

Math 180, Final Exam, Study Guide Problem 6 Solution

6. Use calculus to find the exact x - and y-coordinates of any local maxima, local minima, and inflection points of the function $f(x)=x^{3}-12 x+5$.

Solution: The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}-12 x+5\right)^{\prime} & =0 \\
3 x^{2}-12 & =0 \\
3\left(x^{2}-4\right) & =0 \\
3(x-2)(x+2) & =0 \\
x & = \pm 2
\end{aligned}
$$

Thus, $x= \pm 2$ are the critical points of f. We will use the First Derivative Test to classify the points as either local maxima or a local minima. We take the domain of $f(x)$ and split it into the intervals $(-\infty,-2),(-2,2)$, and $(2, \infty)$ and then evaluate $f^{\prime}(x)$ at a test point in each interval.

Interval	Test Number, c	$f^{\prime}(c)$	Sign of $f^{\prime}(c)$
$(-\infty,-2)$	-3	$f^{\prime}(-3)=15$	+
$(-2,2)$	0	$f^{\prime}(0)=-12$	-
$(2, \infty)$	3	$f^{\prime}(3)=15$	+

Since the sign of $f^{\prime}(x)$ changes sign from + to - at $x=-2$, the point $f(-2)=21$ is a local maximum and since the sign of $f^{\prime}(x)$ changes from - to + at $x=2$, the point $f(2)=-11$ is a local minimum.
The critical points of $f(x)$ are the values of x where $f^{\prime \prime}(x)$ changes sign. To determine these we first find the values of x for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\left(3 x^{2}-12\right)^{\prime} & =0 \\
6 x & =0 \\
x & =0
\end{aligned}
$$

We now take the domain of $f(x)$ and split it into the intervals $(-\infty, 0)$ and $(0, \infty)$ and then evaluate $f^{\prime \prime}(x)$ at a test point in each interval.

Interval	Test Number, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty, 0)$	-1	$f^{\prime \prime}(-1)=-6$	-
$(0, \infty)$	1	$f^{\prime \prime}(1)=6$	+

We see that $f^{\prime \prime}(x)$ changes sign at $x=0$. Thus, $x=0$ is an inflection point.

Math 180, Final Exam, Study Guide
 Problem 7 Solution

7. Use calculus to find the x - and y-coordinates of any local maxima, local minima, and inflection points of the function $f(x)=x e^{-x}$ on the interval $0 \leq x<\infty$. The y-coordinates may be written in terms of e or as a 4-place decimal.

Solution: The critical points of $f(x)$ are the values of x for which either $f^{\prime}(x)$ does not exist or $f^{\prime}(x)=0$. Since $f(x)$ is a polynomial, $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ so the only critical points are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x e^{-x}\right)^{\prime} & =0 \\
-x e^{-x}+e^{-x} & =0 \\
e^{-x}(-x+1) & =0 \\
-x+1 & =0 \\
x & =1
\end{aligned}
$$

Thus, $x=1$ is the only critical point of f. We will use the Second Derivative Test to classify it.

$$
f^{\prime \prime}(x)=-e^{-x}+x e^{-x}-e^{-x}=e^{-x}(x-2)
$$

At $x=1$ we have $f^{\prime \prime}(1)=-e^{-1}<0$. Thus, the Second Derivative Test implies that $f(1)=e^{-1}$ is a local maximum.
The critical points of $f(x)$ are the values of x where $f^{\prime \prime}(x)$ changes sign. To determine these we first find the values of x for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
e^{-x}(x-2) & =0 \\
x-2 & =0 \\
x & =2
\end{aligned}
$$

We now take the domain of $f(x)$ and split it into the intervals $(-\infty, 2)$ and $(2, \infty)$ and then evaluate $f^{\prime \prime}(x)$ at a test point in each interval.

Interval	Test Number, c	$f^{\prime \prime}(c)$	Sign of $f^{\prime \prime}(c)$
$(-\infty, 2)$	0	$f^{\prime \prime}(0)=-2$	-
$(2, \infty)$	3	$f^{\prime \prime}(3)=e^{-3}$	+

We see that $f^{\prime \prime}(x)$ changes sign at $x=2$. Thus, $x=2$ is an inflection point. The corresponding value of f is $f(2)=2 e^{-2}$.

Math 180, Final Exam, Study guide Problem 8 Solution

8. Estimate the integral $\int_{0}^{40} f(t) d t$ using the left Riemann sum with four subdivisions. Some values of the function f are given in the table:

$$
\begin{array}{cccccc}
t & 0 & 10 & 20 & 30 & 40 \\
f(t) & 5.3 & 5.1 & 4.6 & 3.7 & 2.3
\end{array}
$$

If the function f is known to be decreasing, could the integral be larger than your estimate? Explain why or why not.

Solution: In calculating L_{4}, the value of Δx is:

$$
\Delta x=\frac{b-a}{N}=\frac{40-0}{4}=10
$$

The integral estimates are then:

$$
\begin{aligned}
L_{4} & =\Delta x[f(0)+f(10)+f(20)+f(30)] \\
& =10[5.3+5.1+4.6+3.7] \\
& =187
\end{aligned}
$$

Since f is known to be decreasing, we know that $R_{4} \leq S \leq L_{4}$ where S is the actual value of the integral. Therefore, the actual value of the integral cannot be larger than L_{4}.

Math 180, Final Exam, Study Guide Problem 9 Solution

9. Write the integral which gives the area of the region between $x=0$ and $x=2$, above the x-axis, and below the curve $y=9-x^{2}$. Evaluate your integral exactly to find the area.

Solution: The area of the region is given by the integral:

$$
\int_{0}^{2}\left(9-x^{2}\right) d x
$$

We use FTC I to evaluate the integral.

$$
\begin{aligned}
\int_{0}^{2}\left(9-x^{2}\right) d x & =9 x-\left.\frac{x^{3}}{3}\right|_{0} ^{2} \\
& =\left(9(2)-\frac{2^{3}}{3}\right)-\left(9(0)-\frac{0^{3}}{3}\right) \\
& =\frac{46}{3}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 10 Solution

10. Write the integral which gives the area of the region between $x=1$ and $x=3$, above the x-axis, and below the curve $y=x-\frac{1}{x^{2}}$. Evaluate your integral exactly to find the area.

Solution: The area is given by the integral:

$$
\int_{1}^{3}\left(x-\frac{1}{x^{2}}\right) d x
$$

Using FTC I, we have:

$$
\begin{aligned}
\int_{1}^{3}\left(x-\frac{1}{x^{2}}\right) d x & =\frac{x^{2}}{2}+\left.\frac{1}{x}\right|_{1} ^{3} \\
& =\left(\frac{3^{2}}{2}+\frac{1}{3}\right)-\left(\frac{1^{2}}{2}+\frac{1}{1}\right) \\
& =\frac{10}{3}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 11 Solution

11. The average value of the function $f(x)$ on the interval $a \leq x \leq b$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Find the average value of the function $f(x)=\frac{1}{x^{2}}$ on the interval $2 \leq x \leq 6$.
Solution: The average value is

$$
\begin{aligned}
\frac{1}{6-2} \int_{2}^{6} \frac{1}{x^{2}} d x & =\frac{1}{4}\left[-\frac{1}{x}\right]_{2}^{6} \\
& =\frac{1}{4}\left[-\frac{1}{6}-\left(-\frac{1}{2}\right)\right] \\
& =\frac{1}{12}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 12 Solution

12. Find

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}
$$

Explain how you obtain your answer.
Solution: Upon substituting $x=0$ into the function $f(x)=\frac{\sqrt{1+x}-1}{x}$ we find that

$$
\frac{\sqrt{1+x}-1}{x}=\frac{\sqrt{1+0}-1}{0}=\frac{0}{0}
$$

which is indeterminate. We can resolve the indeterminacy by multiplying $f(x)$ by the "conjugate" of the numerator divided by itself.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)-1}{x(\sqrt{1+x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{1+x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+1} \\
& =\frac{1}{\sqrt{1+0}+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 13 Solution

13. Find

$$
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}}
$$

Explain how you obtain your answer.
Solution: Upon substituting $x=0$ into the function we find that

$$
\frac{1-\cos (3 x)}{x^{2}}=\frac{1-\cos (3 \cdot 0)}{0^{2}}=\frac{0}{0}
$$

which is indeterminate. We resolve this indeterminacy by using L'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{(1-\cos (3 x))^{\prime}}{\left(x^{2}\right)^{\prime}} \\
&=\lim _{x \rightarrow 0} \frac{3 \sin (3 x)}{2 x} \\
&=\frac{3}{2} \lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}
\end{aligned}
$$

This limit has the indeterminate form $\frac{0}{0}$ so we use L'Hôpital's rule again.

$$
\begin{aligned}
& \frac{3}{2} \lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \frac{3}{2} \lim _{x \rightarrow 0} \frac{(\sin (3 x))^{\prime}}{(x)^{\prime}} \\
&=\frac{3}{2} \lim _{x \rightarrow 0} \frac{3 \cos (3 x)}{1} \\
&=\frac{3}{2} \cdot \frac{3 \cos (3 \cdot 0)}{1} \\
&=\frac{9}{2}
\end{aligned}
$$

Math 180, Exam 2, Study Guide
 Problem 14 Solution

14. The graph below represents the derivative, $f^{\prime}(x)$.
(i) On what interval is the original f decreasing?
(ii) At which labeled value of x is the value of $f(x)$ a global minimum?
(iii) At which labeled value of x is the value of $f(x)$ a global maximum?
(iv) At which labeled values of x does $y=f(x)$ have an inflection point?

Solution:

(i) f is decreasing when $f^{\prime}(x)<0$. From the graph, we can see that $f^{\prime}(x)<0$ on the interval (a, c).
(ii) We know that $f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t$. That is, $f(x)$ is the signed area between $y=f^{\prime}(x)$ and the x-axis on the interval $[0, x]$ plus a constant. Thus, the global minimum of $f(x)$ will occur when the signed area is a minimum. This occurs at $x=c$.
(iii) The global maximum of $f(x)$ will occur when the signed area is a maximum. This occurs at $x=e$.
(iv) An inflection point occurs when $f^{\prime \prime}(x)$ changes sign, i.e. when $f^{\prime}(x)$ transitions from increasing to decreasing or vice versa. This occurs at $x=b$ and $x=d$.

Math 180, Final Exam, Study Guide
 Problem 15 Solution

15. The function $f(x)$ has the following properties:

- $f(5)=2$
- $f^{\prime}(5)=0.6$
- $f^{\prime \prime}(5)=-0.4$
(a) Find the tangent line to $y=f(x)$ at the point $(5,2)$.
(b) Use (a) to estimate $f(5.2)$.
(c) If f is known to be concave down, could your estimate in (b) be greater than the actual $f(5.2)$? Give a reason supporting your answer.

Solution:

(a) The slope of the tangent line at the point $(5,2)$ is $f^{\prime}(5)=0.6$. Thus, an equation for the tangent line is:

$$
y-2=0.6(x-5)
$$

(b) The tangent line gives the linearization of $f(x)$ at $x=2$. That is,

$$
L(x)=2+0.6(x-5)
$$

Thus, an approximate value of $f(5.2)$ using the linearization is:

$$
f(5.2) \approx L(5.2)=2+0.6(5.2-5)=2.12
$$

(c) If f is concave down then the tangent line at $x=5$ is always above the graph of $y=f(x)$ except at $x=5$. Thus, if we use the tangent line to approximate $f(5.2)$, the estimate will give us a value that is greater than the actual value of $f(5.2)$.

Math 180, Final Exam, Study Guide
 Problem 16 Solution

16. The point (x, y) lies on the curve $y=\sqrt{x}$.
(a) Find the distance from (x, y) to $(2,0)$ as a function $f(x)$ of x alone.
(b) Find the value of x that makes this distance the smallest.

Solution: The function we seek to minimize is the distance between (x, y) and $(2,0)$.
Function: \quad Distance $=\sqrt{(x-2)^{2}+(y-0)^{2}}$
The constraint in this problem is that the point (x, y) must lie on the curve $y=\sqrt{x}$.
Constraint: $\quad y=\sqrt{x}$
Plugging this into the distance function (1) and simplifying we get:

$$
\begin{aligned}
\text { Distance } & =\sqrt{(x-2)^{2}+(\sqrt{x}-0)^{2}} \\
f(x) & =\sqrt{x^{2}-3 x+4}
\end{aligned}
$$

We want to find the absolute minimum of $f(x)$ on the interval $[0, \infty)$. We choose this interval because (x, y) must be on the line $y=\sqrt{x}$ and the domain of this function is $[0, \infty)$.

The absolute minimum of $f(x)$ will occur either at a critical point of $f(x)$ in $(0, \infty)$, at $x=0$, or it will not exist. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
{\left[\left(x^{2}-3 x+4\right)^{1 / 2}\right]^{\prime} } & =0 \\
\frac{1}{2}\left(x^{2}-3 x+4\right)^{-1 / 2} \cdot\left(x^{2}-3 x+4\right)^{\prime} & =0 \\
\frac{2 x-3}{2 \sqrt{x^{2}-3 x+4}} & =0 \\
2 x-3 & =0 \\
x & =\frac{3}{2}
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f\left(\frac{3}{2}\right)=\sqrt{\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+4}=\frac{\sqrt{7}}{2}
$$

Evaluating $f(x)$ at $x=0$ and taking the limit as $x \rightarrow \infty$ we get:

$$
\begin{aligned}
f(0) & =\sqrt{0^{2}-3(0)+4}=2 \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \sqrt{x^{2}-3 x+4}=\infty
\end{aligned}
$$

both of which are larger than $\frac{\sqrt{7}}{2}$. We conclude that the distance is an absolute minimum at $x=\frac{3}{2}$ and that the resulting distance is $\frac{\sqrt{7}}{2}$. The last step is to find the corresponding value for y by plugging $x=\frac{3}{2}$ into equation (2).

$$
y=\sqrt{\frac{3}{2}}
$$

Math 180, Final Exam, Study Guide Problem 17 Solution

17. You have 24 feet of rabbit-proof fence to build a rectangular garden using one wall of a house as one side of the garden and the fence on the other three sides. What dimensions of the rectangle give the largest possible area for the garden?

Solution: We begin by letting x be the length of the side opposite the house and y be the lengths of the remaining two sides. The function we seek to minimize is the area of the garden:

Function: \quad Area $=x y$
The constraint in this problem is that the length of the fence is 24 feet.
Constraint : $\quad x+2 y=24$
Solving the constraint equation (2) for y we get:

$$
\begin{equation*}
y=12-\frac{x}{2} \tag{3}
\end{equation*}
$$

Plugging this into the function (1) and simplifying we get:

$$
\begin{aligned}
\text { Area } & =x\left(12-\frac{x}{2}\right) \\
f(x) & =12 x-\frac{1}{2} x^{2}
\end{aligned}
$$

We want to find the absolute maximum of $f(x)$ on the interval $[0,24]$.
The absolute maximum of $f(x)$ will occur either at a critical point of $f(x)$ in $[0,24]$ or at one of the endpoints of the interval. The critical points of $f(x)$ are solutions to $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(12 x-\frac{1}{2} x^{2}\right)^{\prime} & =0 \\
12-x & =0 \\
x & =12
\end{aligned}
$$

Plugging this into $f(x)$ we get:

$$
f(12)=12(12)-\frac{1}{2}(12)^{2}=72
$$

Evaluating $f(x)$ at the endpoints we get:

$$
\begin{aligned}
f(0) & =12(0)-\frac{1}{2}(0)^{2}=0 \\
f(24) & =12(24)-\frac{1}{2}(24)^{2}=0
\end{aligned}
$$

both of which are smaller than 72 . We conclude that the area is an absolute maximum at $x=12$ and that the resulting area is 72 . The last step is to find the corresponding value for y by plugging $x=12$ into equation (3).

$$
y=12-\frac{x}{2}=12-\frac{12}{2}=6
$$

Math 180, Final Exam, Study Guide Problem 18 Solution

18. Evaluate the integral $\int x e^{x^{2}-1} d x$.

Solution: We use the substitution $u=x^{2}-1, \frac{1}{2} d u=x d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int x e^{x^{2}-1} d x & =\frac{1}{2} \int e^{u} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}-1}+C
\end{aligned}
$$

Math 180, Final Exam, Study Guide Problem 19 Solution

19. Evaluate the integral $\int \sin ^{2} \cos x d x$.

Solution: We use the substitution $u=\sin x, d u=\cos x d x$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int \sin ^{2} x \cos x d x & =\int u^{2} d u \\
& =\frac{u^{3}}{3}+C \\
& =\frac{\sin ^{3} x}{3}+C
\end{aligned}
$$

Math 180, Final Exam, Study Guide
 Problem 20 Solution

20. Evaluate $\int_{2}^{5} \frac{2 x-3}{\sqrt{x^{2}-3 x+6}} d x$.

Solution: We use the substitution $u=x^{2}-3 x+6, d u=(2 x-3) d x$. The limits of integration become $u=2^{2}-3(2)+6=4$ and $u=5^{2}-3(5)+6=16$. Making the substitutions and evaluating the integral we get:

$$
\begin{aligned}
\int_{2}^{5} \frac{2 x-3}{\sqrt{x^{2}-3 x+6}} d x & =\int_{4}^{16} \frac{1}{\sqrt{u}} d u \\
& =\left.2 \sqrt{u}\right|_{4} ^{16} \\
& =2 \sqrt{16}-2 \sqrt{4} \\
& =4
\end{aligned}
$$

