Math 181, Exam 1, Fall 2008
 Problem 1 Solution

1. Compute the following integrals.
(a) $\int \frac{\sin x}{1-2 \cos x} d x$
(b) $\int \frac{d x}{\sqrt{1-4 x^{2}}}$

Solution:

(a) The integral is computed using the u-substitution method. Let $u=1-2 \cos x$. Then $d u=2 \sin x d x \Rightarrow \frac{1}{2} d u=\sin x d x$. Substituting these into the integral and evaluating we get:

$$
\begin{aligned}
\int \frac{\sin x}{1-2 \cos x} d x & =\int \frac{1}{1-2 \cos x} \cdot \sin x d x \\
& =\int \frac{1}{u} \cdot \frac{1}{2} d u \\
& =\frac{1}{2} \int \frac{1}{u} d u \\
& =\frac{1}{2} \ln |u|+C \\
& =\frac{1}{2} \ln |1-2 \cos x|+C
\end{aligned}
$$

(b) The integral is computed using the u-substitution method. Let $u=2 x$. Then $d u=$ $2 d x \Rightarrow \frac{1}{2} d u=d x$ and we get:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{1-4 x^{2}}} & =\int \frac{d x}{\sqrt{1-(2 x)^{2}}} \\
& =\int \frac{\frac{1}{2} d u}{\sqrt{1-u^{2}}} \\
& =\frac{1}{2} \int \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\frac{1}{2} \arcsin u+C \\
& =\frac{1}{2} \arcsin (2 x)+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2008
 \section*{Problem 2 Solution}

2. Find the volume of the solid of revolution obtained by rotating the region in the first quadrant bounded by $y=x^{2}, x+y=6$, and $x=0$ about the y-axis.

Solution:

To find the volume we will use the Shell Method. The variable of integration is x and the formula is:

$$
V=2 \pi \int_{a}^{b} x(\text { top }- \text { bottom }) d x
$$

where the top curve is $y=6-x$ and the bottom curve is $y=x^{2}$. The lower limit of integration is $a=0$. To determine the upper limit we must find the points of intersection of the top and bottom curves. To do this we set the y 's equal to each other and solve for x.

$$
\begin{aligned}
y & =y \\
x^{2} & =6-x \\
x^{2}+x-6 & =0 \\
(x+3)(x-2) & =0 \\
x=-3, x & =2
\end{aligned}
$$

In the problem statement we are told to take the region in the first quadrant. Therefore, we
take $b=2$. The volume is then:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{2} x\left[(6-x)-x^{2}\right] d x \\
& =2 \pi \int_{0}^{2}\left(6 x-x^{2}-x^{3}\right) d x \\
& =2 \pi\left[3 x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{2} \\
& =2 \pi\left[3(2)^{2}-\frac{1}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right] \\
& =\frac{32 \pi}{3}
\end{aligned}
$$

Math 181, Exam 1, Fall 2008
 Problem 3 Solution

3. Compute each part below.
(a) Compute the area of the region bounded by $y=x^{2}-1$ and $y=4 x-4$.
(b) Compute $f^{\prime}(x)$ where

$$
f(x)=\int_{1}^{x^{2}} \ln (t) d t, \quad x>0
$$

Solution:

The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{a}^{b}(\text { top }- \text { bottom }) d x
$$

where the limits of integration are the x-coordinates of the points of intersection of the two curves. These are found by setting the y 's equal to each other and solving for x.

$$
\begin{aligned}
y & =y \\
x^{2}-1 & =4 x-4 \\
x^{2}-4 x+3 & =0 \\
(x-1)(x-3) & =0 \\
x=1, x & =3
\end{aligned}
$$

From the graph we see that the top curve is $y=4 x-4$ and the bottom curve is $y=x^{2}-1$. Therefore, the area between the curves is:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}(\text { top }- \text { bottom }) d x \\
& =\int_{1}^{3}\left[(4 x-4)-\left(x^{2}-1\right)\right] d x \\
& =\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x \\
& =\left[-\frac{1}{3} x^{3}+2 x^{2}-3 x\right]_{1}^{3} \\
& =\left[-\frac{1}{3}(3)^{3}+2(3)^{2}-3(3)\right]-\left[-\frac{1}{3}(1)^{3}+2(1)^{2}-3(1)\right] \\
& =[-9+18-9]-\left[-\frac{1}{3}+2-3\right] \\
& =\frac{4}{3}
\end{aligned}
$$

(b) Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative is:

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{1}^{x^{2}} \ln (t) d t \\
& =\ln \left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\ln \left(x^{2}\right) \cdot(2 x)
\end{aligned}
$$

Math 181, Exam 1, Fall 2008
 Problem 4 Solution

4. Use an integral to compute the volume of a right circular cone whose base has radius R and whose height is h.

Solution: To find the volume we will use the formula:

$$
V=\int_{c}^{d} A(y) d y
$$

where $A(y)$ is the cross-sectional area of the cone as a function of height y and $0 \leq y \leq h$. The horizontal cross sections are circles, so the cross-sectional area is:

$$
A(y)=\pi r^{2}
$$

where r is the radius of the cross section at height y from the base. If we look at the cone from the side, we see a triangle. The cross-section as viewed from the side is a horizontal line segment at height y. The radius of the cross section is half of the length of this line segment. Using similar triangles, we have:

$$
\begin{aligned}
\frac{\text { base }}{\text { height }}=\frac{R}{h} & =\frac{r}{h-y} \\
r & =\frac{R}{h}(h-y)
\end{aligned}
$$

The volume is then:

$$
\begin{aligned}
V & =\int_{0}^{h} \pi r^{2} d y \\
& =\int_{0}^{h} \pi\left[\frac{R}{h}(h-y)\right]^{2} d y \\
& =\pi \frac{R^{2}}{h^{2}} \int_{0}^{h}(y-h)^{2} d y \\
& =\pi \frac{R^{2}}{h^{2}}\left[\frac{1}{3}(y-h)^{3}\right]_{0}^{h} \\
& =\pi \frac{R^{2}}{h^{2}}\left[\frac{1}{3}(h-h)^{3}-\frac{1}{3}(0-h)^{3}\right] \\
& =\frac{1}{3} \pi R^{2} h
\end{aligned}
$$

Math 181, Exam 1, Fall 2008
 Problem 5 Solution

5. Approximate the value of the definite integral:

$$
\int_{1}^{3} \frac{d x}{x}
$$

using
(a) the Midpoint Rule with $N=2$,
(b) the Trapezoidal Rule with $N=2$, and
(c) Simpson's Rule with $N=4$.

Your answers should be writen as a single, reduced fraction.

Solution:

(a) The length of each subinterval of $[1,3]$ is

$$
\Delta x=\frac{b-a}{N}=\frac{3-1}{2}=1
$$

The estimate M_{2} is:

$$
\begin{aligned}
M_{2} & =\Delta x\left[f\left(\frac{3}{2}\right)+f\left(\frac{5}{2}\right)\right] \\
& =1 \cdot\left[\frac{1}{\frac{3}{2}}+\frac{1}{\frac{5}{2}}\right] \\
& =\frac{2}{3}+\frac{2}{5} \\
& =\frac{16}{15}
\end{aligned}
$$

(b) The length of each subinterval of $[1,3]$ is $\Delta x=1$ just as in part (a). The estimate T_{2} is:

$$
\begin{aligned}
T_{2} & =\frac{\Delta x}{2}[f(1)+2 f(2)+f(3)] \\
& =\frac{1}{2}\left[\frac{1}{1}+2 \cdot \frac{1}{2}+\frac{1}{3}\right] \\
& =\frac{7}{6}
\end{aligned}
$$

(c) We can use the following formula to find S_{4} :

$$
S_{4}=\frac{2}{3} M_{2}+\frac{1}{3} T_{2}
$$

where M_{2} and T_{2} were found in parts (a) and (b). We get:

$$
\begin{aligned}
S_{4} & =\frac{2}{3}\left(\frac{16}{15}\right)+\frac{1}{3}\left(\frac{7}{6}\right) \\
& =\frac{32}{45}+\frac{7}{18} \\
& =\frac{11}{10}
\end{aligned}
$$

