Math 181, Exam 1, Fall 2009
 Problem 1 Solution

1. a) i) Find an antiderivative for the function $f(x)=x \cos x$.
ii) Compute the definite integral $\int_{0}^{\pi} x \cos x d x$.
b) i) Find an antiderivative for the function $f(x)=x e^{x}$.
ii) Compute the definite integral $\int_{0}^{1} x e^{x} d x$.

Solution: a) i) An antiderivative for f is a function F such that:

$$
F(x)=\int f(x) d x=\int x \cos x d x
$$

We use Integration by Parts to evaluate the integral. Let $u=x$ and $v^{\prime}=\cos x$. Then $u^{\prime}=1$ and $v=\sin x$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
& F(x)=\int x \cos x d x=x \sin x-\int \sin x d x \\
& F(x)=\int x \cos x d x=x \sin x+\cos x
\end{aligned}
$$

ii) The value of the integral is found using the Fundamental Theorem of Calculus:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)=x \sin x+\cos x$ was found in part i).

$$
\begin{aligned}
\int_{0}^{\pi} x \cos x d x & =F(\pi)-F(0) \\
& =(\pi \sin \pi+\cos \pi)-(0 \cdot \sin 0+\cos 0) \\
& =(0-1)-(0+1) \\
& =-2
\end{aligned}
$$

b) i) An antiderivative for f is a function F such that:

$$
F(x)=\int f(x) d x=\int x e^{x} d x
$$

We use Integration by Parts to evaluate the integral. Let $u=x$ and $v^{\prime}=e^{x}$. Then $u^{\prime}=1$ and $v=e^{x}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
& F(x)=\int x e^{x} d x=x e^{x}-\int e^{x} d x \\
& F(x)=\int x e^{x} d x=x e^{x}-e^{x}
\end{aligned}
$$

ii) The value of the integral is found using the Fundamental Theorem of Calculus:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)=x e^{x}-e^{x}$ was found in part i).

$$
\begin{aligned}
\int_{0}^{1} x e^{x} d x & =F(1)-F(0) \\
& =\left(1 \cdot e^{1}-e^{1}\right)-\left(0 \cdot e^{0}-e^{0}\right) \\
& =(e-e)-(0-1) \\
& =1
\end{aligned}
$$

Math 181, Exam 1, Fall 2009
 Problem 2 Solution

2. a) i) Find the trapezoidal approximation T_{2} for the function $f(x)=x^{2}+x$ over the interval [0, 2].
ii) Find the area enclosed between the graphs of the functions $y=x^{2}$ and $y=2-x^{2}$.
b) i) Find the midpoint approximation M_{2} for the function $f(x)=x^{2}-x$ over the interval [0, 4].
ii) Find the area enclosed between the graphs of the functions $y=x^{2}$ and $y=3 x-2$.

Solution: a) i) In this problem we use $N=2$ subintervals of $[0,2]$. This is because of the subscript on T_{2}. The value of Δx is then:

$$
\Delta x=\frac{b-a}{N}=\frac{2-0}{2}=1
$$

The trapezoidal approximation T_{2} is then:

$$
\begin{aligned}
T_{2} & =\frac{\Delta x}{2}[f(0)+2 f(1)+f(2)] \\
& =\frac{1}{2}\left[\left(0^{2}+0\right)+2\left(1^{2}+1\right)+\left(2^{2}+2\right)\right] \\
& =\frac{1}{2}[0+2(2)+6] \\
& =5
\end{aligned}
$$

ii)

The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{a}^{b}(\text { top }- \text { bottom }) d x
$$

where the limits of integration are the x-coordinates of the points of intersection of the two curves. These are found by setting the y 's equal to each other and solving for x.

$$
\begin{aligned}
y & =y \\
x^{2} & =2-x^{2} \\
2 x^{2} & =2 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

From the figure we see that the top curve is $y=2-x^{2}$ and the bottom one is $y=x^{2}$. The area is then:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}[\text { top }- \text { bottom }] d x \\
& =\int_{-1}^{1}\left[\left(2-x^{2}\right)-x^{2}\right] d x \\
& =\int_{-1}^{1}\left(2-2 x^{2}\right) d x \\
& =\left[2 x-\frac{2}{3} x^{3}\right]_{-1}^{1} \\
& =\left[2(1)-\frac{2}{3}(1)^{3}\right]-\left[2(-1)-\frac{2}{3}(-1)^{3}\right] \\
& =\left[2-\frac{2}{3}\right]-\left[-2+\frac{2}{3}\right] \\
& =\frac{8}{3}
\end{aligned}
$$

b) i) In this problem we use $N=2$ subintervals of $[0,4]$. This is because of the subscript on M_{2}. The value of Δx is then:

$$
\Delta x=\frac{b-a}{N}=\frac{4-0}{2}=2
$$

The midpoint approximation M_{2} is then:

$$
\begin{aligned}
M_{2} & =\Delta x[f(1)+f(3)] \\
& =2 \cdot\left[\left(1^{2}-1\right)+\left(3^{2}-3\right)\right] \\
& =2 \cdot[0+6] \\
& =12
\end{aligned}
$$

ii)

The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{a}^{b}(\text { top }- \text { bottom }) d x
$$

where the limits of integration are the x-coordinates of the points of intersection of the two curves. These are found by setting the y 's equal to each other and solving for x.

$$
\begin{aligned}
y & =y \\
x^{2} & =3 x-2 \\
x^{2}-3 x+2 & =0 \\
(x-1)(x-2) & =0 \\
x=1, x & =2
\end{aligned}
$$

From the graph we see that the top graph is $y=3 x-2$ and the bottom one is $y=x^{2}$. The area is then:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}[\text { top }- \text { bottom }] d x \\
& =\int_{1}^{2}\left[(3 x-2)-x^{2}\right] d x \\
& =\int_{1}^{2}\left(3 x-2-x^{2}\right) d x \\
& =\left[\frac{3}{2} x^{2}-2 x-\frac{1}{3} x^{3}\right]_{1}^{2} \\
& =\left[\frac{3}{2}(2)^{2}-2(2)-\frac{1}{3}(2)^{3}\right]-\left[\frac{3}{2}(1)^{2}-2(1)-\frac{1}{3}(1)^{3}\right] \\
& =\left[6-4-\frac{8}{3}\right]-\left[\frac{3}{2}-2-\frac{1}{3}\right] \\
& =\frac{1}{6}
\end{aligned}
$$

Math 181, Exam 1, Fall 2009
 Problem 3 Solution

3. a) Compute the indefinite integrals:

$$
\int \frac{d x}{x^{2}+x} \quad \int \sin ^{3} x d x
$$

b) Compute the indefinite integrals:

$$
\int \frac{d x}{x^{2}-1} \quad \int \cos ^{3} x d x
$$

Solution: a) The first integral can be solved using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$
\frac{1}{x^{2}+x}=\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}
$$

Next, we multiply the above equation by $x(x+1)$ to get:

$$
1=A(x+1)+B x
$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select $x=0$ and $x=-1$ for simplicity.

$$
\begin{aligned}
x=0 & : A(0+1)+B(0)=1 \quad \Rightarrow \quad A=1 \\
x=-1: & A(-1+1)+B(-1)=1 \quad \Rightarrow \quad B=-1
\end{aligned}
$$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{d x}{x^{2}+x} & =\int\left(\frac{1}{x}+\frac{-1}{x+1}\right) d x \\
& =\ln |x|-\ln |x+1|+C
\end{aligned}
$$

The second integral can be solved by rewriting it using the Pythagorean Identity $\cos ^{2} x+$ $\sin ^{2} x=1$.

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int \sin ^{2} x \sin x d x \\
& =\int\left(1-\cos ^{2} x\right) \sin x d x
\end{aligned}
$$

Now let $u=\cos x$. Then $d u=-\sin x d x \quad \Rightarrow-d u=\sin x d x$ and we get:

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int\left(1-u^{2}\right)(-d u) \\
& =\int\left(u^{2}-1\right) d u \\
& =\frac{1}{3} u^{3}-u+C \\
& =\frac{1}{3} \cos ^{3} x-\cos x+C
\end{aligned}
$$

b) The first integral can be solved using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$
\frac{1}{x^{2}-1}=\frac{1}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}
$$

Next, we multiply the above equation by $x(x+1)$ to get:

$$
1=A(x+1)+B(x-1)
$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select $x=1$ and $x=-1$ for simplicity.

$$
\begin{aligned}
& x=1: A(1+1)+B(1-1)=1 \quad \Rightarrow \quad A=\frac{1}{2} \\
& x=-1: A(-1+1)+B(-1-1)=1 \quad \Rightarrow \quad B=-\frac{1}{2}
\end{aligned}
$$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{d x}{x^{2}-1} & =\int\left(\frac{\frac{1}{2}}{x-1}+\frac{-\frac{1}{2}}{x+1}\right) d x \\
& =\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|+C
\end{aligned}
$$

The second integral can be solved by rewriting it using the Pythagorean Identity $\cos ^{2} x+$ $\sin ^{2} x=1$.

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int \cos ^{2} x \cos x d x \\
& =\int\left(1-\sin ^{2} x\right) \cos x d x
\end{aligned}
$$

Now let $u=\sin x$. Then $d u=\cos x d x$ and we get:

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int\left(1-\sin ^{2} x\right) \cos x d x \\
& =\int\left(1-u^{2}\right) d u \\
& =u-\frac{1}{3} u^{3}+C \\
& =\sin x-\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2009
 Problem 4 Solution

4.a) Compute the indefinite integrals:

$$
\int \frac{\ln x d x}{x} \quad \int \arctan x d x
$$

b) Compute the indefinite integrals:

$$
\int \frac{\arctan x}{x^{2}+1} d x \quad \int \ln x d x
$$

Solution: a) The first integral is computed using the u-substitution method. Let $u=\ln x$. Then $d u=\frac{1}{x} d x$ and we get:

$$
\begin{aligned}
\int \frac{\ln x d x}{x} & =\int u d u \\
& =\frac{1}{2} u^{2}+C \\
& =\frac{1}{2}(\ln x)^{2}+C
\end{aligned}
$$

The second integral is computed using Integration by Parts. Let $u=\arctan x$ and $v^{\prime}=1$. Then $u^{\prime}=\frac{1}{x^{2}+1}$ and $v=x$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\int \arctan x d x=x \arctan x-\int \frac{x}{x^{2}+1} d x
$$

The integral on the right hand side is computed using the u-substitution $u=x^{2}+1$. Then
$d u=2 x d x \quad \Rightarrow \quad \frac{1}{2} d u=x d x$ and we get:

$$
\begin{aligned}
\int \arctan x d x & =x \arctan x-\int \frac{x}{x^{2}+1} d x \\
& =x \arctan x-\int \frac{1}{x^{2}+1} \cdot x d x \\
& =x \arctan x-\int \frac{1}{u} \cdot \frac{1}{2} d u \\
& =x \arctan x-\frac{1}{2} \int \frac{1}{u} d u \\
& =x \arctan x-\frac{1}{2} \ln |u|+C \\
& =x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+C
\end{aligned}
$$

b) The first integral is computed using the u-substitution method. Let $u=\arctan x$. Then $d u=\frac{1}{x^{2}+1} d x$ and we get:

$$
\begin{aligned}
\int \frac{\arctan x}{x^{2}+1} d x & =\int u d u \\
& =\frac{1}{2} u^{2}+C \\
& =\frac{1}{2}(\arctan x)^{2}+C
\end{aligned}
$$

The second integral is computed using Integration by Parts. Let $u=\ln x$ and $v^{\prime}=1$. Then $u^{\prime}=\frac{1}{x}$ and $v=x$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int \ln x d x & =x \ln x-\int \frac{1}{x} \cdot x d x \\
& =x \ln x-\int d x \\
& =x \ln x-x+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2009
 \section*{Problem 5 Solution}

5.a) The region enclosed by the graphs of $y=x^{2}$ and $y=\sqrt{x}$ is rotated about the x-axis. Find the volume of the resulting solid.
b) The region enclosed by the graphs of $y=x^{2}$ and $y=\sqrt{x}$ is rotated about the y-axis. Find the volume of the resulting solid.

Solution:

a) To find the volume of the solid obtained when the region is rotated about the x-axis, we will use the Washer Method. The variable of integration is x and the corresponding formula is:

$$
V=\pi \int_{a}^{b}\left[(\mathrm{top})^{2}-(\text { bottom })^{2}\right] d x
$$

The top curve is $y=\sqrt{x}$ and the bottom curve is $y=x^{2}$. The values of a and b correspond to the points of intersection of the two graphs. To determine these we set the y 's equal to each other and solve for x.

$$
\begin{aligned}
y & =y \\
x^{2} & =\sqrt{x} \\
x^{4} & =x \\
x^{4}-x & =0 \\
x\left(x^{3}-1\right) & =0 \\
x=0, x^{3} & =1 \quad \Rightarrow \quad x=1
\end{aligned}
$$

Therefore, the volume is:

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left[(\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left(x-x^{4}\right) d x \\
& =\pi\left[\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =\pi\left[\frac{1}{2}-\frac{1}{5}\right] \\
& =\frac{3 \pi}{10}
\end{aligned}
$$

b) To find the volume of the solid obtained when the region is rotated about the y-axis, we will use the Shell Method. The variable of integration is x and the corresponding formula is:

$$
V=2 \pi \int_{a}^{b} x(\text { top }- \text { bottom }) d x
$$

The top curve is $y=\sqrt{x}$ and the bottom curve is $y=x^{2}$. The values of a and b are $a=0$ and $b=1$ as found in part (a). Therefore, the volume is:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1} x\left(\sqrt{x}-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{3 / 2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{2}{5} x^{5 / 2}-\frac{1}{4} x^{4}\right]_{0}^{1} \\
& =2 \pi\left[\frac{2}{5}-\frac{1}{4}\right] \\
& =\frac{3 \pi}{10}
\end{aligned}
$$

