Math 181, Exam 1, Fall 2011
 Problem 1 Solution

1. Compute the indefinite integral $\int \cos ^{7} x d x$.

Solution: The integral can be solved by rewriting it using the Pythagorean Identity $\cos ^{2} x+$ $\sin ^{2} x=1$.

$$
\begin{aligned}
\int \cos ^{7} x d x & =\int \cos ^{6} x \cos x d x \\
& =\int\left(\cos ^{2} x\right)^{3} \cos d x \\
& =\int\left(1-\sin ^{2} x\right)^{3} \cos x d x
\end{aligned}
$$

Now let $u=\sin x$. Then $d u=\cos x d x$ and we get:

$$
\begin{aligned}
\int \cos ^{7} x d x & =\int\left(1-\sin ^{2} x\right)^{3} \cos x d x \\
& =\int\left(1-u^{2}\right)^{3} d u \\
& =\int\left(1-3 u^{2}+3 u^{4}-u^{6}\right) d u \\
& =u-u^{3}+\frac{3}{5} u^{5}-\frac{1}{7} u^{7}+C \\
& =\sin x-\sin ^{3} x+\frac{3}{5} \sin ^{5} x-\frac{1}{7} \sin ^{7} x+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2011
 Problem 2 Solution

2. Find the volume of the solid obtained by rotating about the x-axis the region enclosed by the graphs of $y=x^{2}$ and $y=6-x$.

Solution: The region being rotated about the x-axis is shown below.

We find the volume using the Washer method. The formula we will use is:

$$
V=\pi \int_{a}^{b}\left(\mathrm{top}^{2}-\mathrm{bottom}^{2}\right) d x
$$

where the top curve is $y=6-x$ and the bottom curve is $y=x^{2}$. The limits of integration are the x-coordinates of the points of intersection of the two graphs. To find the limits of integration, we set the y 's equal to each other and solve for x.

$$
\begin{aligned}
y & =y \\
x^{2} & =6-x \\
x^{2}+x-6 & =0 \\
(x+3)(x-2) & =0 \\
x=-3, x & =2
\end{aligned}
$$

The volume is then:

$$
\begin{aligned}
V & =\pi \int_{a}^{b}\left(\text { top }^{2}-\text { bottom }^{2}\right) d x \\
& =\pi \int_{-3}^{2}\left[(6-x)^{2}-\left(x^{2}\right)^{2}\right] d x \\
& =\pi \int_{-3}^{2}\left(36-12 x+x^{2}-x^{4}\right) d x \\
& =\pi\left[36 x-6 x^{2}+\frac{1}{3} x^{3}-\frac{1}{5} x^{5}\right]_{-3}^{2} \\
& =\pi\left[\left(36(2)-6(2)^{2}+\frac{1}{3}(2)^{3}-\frac{1}{5}(2)^{5}\right)-\left(36(-3)-6(-3)^{2}+\frac{1}{3}(-3)^{3}-\frac{1}{5}(-3)^{5}\right)\right] \\
& =\frac{500 \pi}{3}
\end{aligned}
$$

Math 181, Exam 1, Fall 2011
 \section*{Problem 3 Solution}

3. Compute the indefinite integral:

$$
\int x^{3} \ln x d x
$$

Solution: We will evaluate the integral using Integration by Parts. Let $u=\ln x$ and $v^{\prime}=x^{3}$. Then $u^{\prime}=\frac{1}{x}$ and $v=\frac{1}{4} x^{4}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int x^{3} \ln x d x & =\frac{1}{4} x^{4} \ln x-\int\left(\frac{1}{x}\right)\left(\frac{1}{4} x^{4}\right) d x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{4} \int x^{3} d x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2011

 Problem 4 Solution

 Problem 4 Solution}
4. Compute the indefinite integral:

$$
\int \frac{d x}{x^{2}-3 x+2}
$$

Solution: We will evaluate the integral using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$
\frac{1}{x^{2}+3 x+2}=\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Next, we multiply the above equation by $(x+1)(x+2)$ to get:

$$
1=A(x+2)+B(x+1)
$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select $x=-1$ and $x=-2$ for simplicity.

$$
\begin{array}{ll}
x=-1: & A(-1+2)+B(-1+1)=1 \quad \\
x=-2: & A(-2+2)+B(-2+1)=1 \quad
\end{array} \quad \Rightarrow \quad B=1,1 \text { B }
$$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{d x}{x^{2}+3 x+2} & =\int\left(\frac{A}{x+1}+\frac{B}{x+2}\right) d x \\
& =\int\left(\frac{1}{x+1}+\frac{-1}{x+2}\right) d x \\
& =\ln |x+1|-\ln |x+2|+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2011
 Problem 5 Solution

5. Find the area of the region enclosed by the curves $y^{2}=x$ and $y=x-2$.

Solution:

The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{c}^{d}(\text { right }- \text { left }) d x
$$

where the limits of integration are the y-coordinates of the points of intersection of the two curves. These are found by setting the x 's equal to each other and solving for y.

$$
\begin{aligned}
x & =x \\
y^{2} & =y+2 \\
y^{2}-y-2 & =0 \\
(y+1)(y-2) & =0 \\
y=-1, y & =2
\end{aligned}
$$

From the graph we see that the right curve is $x=y+2$ and the left curve is $x=y^{2}$.

Therefore, the area is:

$$
\begin{aligned}
\text { Area } & =\int_{c}^{d}(\text { right }- \text { left }) d x \\
& =\int_{-1}^{2}\left[(y+2)-y^{2}\right] d y \\
& =\int_{-1}^{2}\left(-y^{2}+y+2\right) d y \\
& =\left[-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}+2 y\right]_{-1}^{2} \\
& =\left[-\frac{1}{3}(2)^{3}+\frac{1}{2}(2)^{2}+2(2)\right]-\left[-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right] \\
& =\frac{9}{2}
\end{aligned}
$$

