Math 181, Exam 1, Fall 2012
 Problem 1 Solution

1. Let R be the region enclosed by the curves $y=x^{4}$ and $y=x$.
(a) Sketch the region R.
(b) Write down the integral representing the volume of the solid obtained by revolving R about the x-axis.
(c) Compute the volume of the solid.

Solution:

(a)

(b) The solid of revolution has cross-sections that are washers. We then use the formula:

$$
V=\int_{a}^{b} \pi\left[f(x)^{2}-g(x)^{2}\right] d x
$$

where $f(x)=x$ and $g(x)=x^{4}$ and the interval is $[a, b]=[0,1]$. Thus, the volume integral is:

$$
V=\int_{0}^{1} \pi\left(x^{2}-x^{8}\right) d x
$$

(c) The volume calculation is as follows:

$$
\begin{aligned}
& V=\pi\left[\frac{x^{3}}{3}-\frac{x^{9}}{9}\right]_{0}^{1} \\
& V=\pi\left[\frac{1}{3}-\frac{1}{9}\right] \\
& V=\frac{2 \pi}{9}
\end{aligned}
$$

Math 181, Exam 1, Fall 2012
 Problem 2 Solution

2. Compute the arc length of the curve given by $y(x)=5-2 x^{3 / 2}$ between $x=0$ and $x=9$.

Solution: The arc length is computed via the formula

$$
L=\int_{a}^{b} \sqrt{1+y^{\prime}(x)^{2}} d x
$$

Since $y(x)=5-2 x^{3 / 2}$ we know that $y^{\prime}(x)=-3 x^{1 / 2}$ and $y^{\prime}(x)^{2}=9 x$. Therefore, the arc length is

$$
\begin{aligned}
L & =\int_{0}^{9} \sqrt{1+9 x} d x \\
L & =\left[\frac{2}{27}(1+9 x)^{3 / 2}\right]_{0}^{9} \\
L & =\left[\frac{2}{27}(1+9 \cdot 9)^{3 / 2}\right]-\left[\frac{2}{27}(1+9 \cdot 0)^{3 / 2}\right] \\
L & =\frac{2}{27}\left(82^{3 / 2}-1\right)
\end{aligned}
$$

Math 181, Exam 1, Fall 2012
 Problem 3 Solution

3. Compute the following integrals:
(a) $\int x^{3} \sin \left(x^{2}\right) d x$
(b) $\int x^{2} 4^{x} d x$

Solution:

(a) We begin by letting $u=x^{2}, \frac{1}{2} d u=x d x$. Using these substitutions, the integral is transformed as follows:

$$
\begin{aligned}
\int x^{3} \sin \left(x^{2}\right) d x & =\int x^{2} \sin \left(x^{2}\right) \cdot x d x \\
& =\int u \sin (u) \cdot \frac{1}{2} d u \\
& =\frac{1}{2} \int u \sin (u) d u
\end{aligned}
$$

The resulting integral may be evaluated using integration by parts. Letting $w=u$ and $d v=\sin (u) d u$ we have $d w=d u$ and $v=-\cos (u)$. Thus, using the integration by parts formula

$$
\int w d v=w v-\int v d w
$$

we obtain

$$
\begin{aligned}
\int u \sin (u) d u & =u(-\cos (u))-\int(-\cos (u)) d u \\
& =-u \cos (u)+\int \cos (u) d u \\
& =-u \cos (u)+\sin (u)+C
\end{aligned}
$$

Finally, we use the fact that $u=x^{2}$ to write our answer as

$$
\int x^{3} \sin \left(x^{2}\right) d x=-x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)+C
$$

(b) The integral may be evaluated using tabular integration.

D	I	sign
x^{2}	4^{x}	
$2 x$	$\frac{1}{\ln (4)} \cdot 4^{x}$	+
2	$\frac{1}{(\ln (4))^{2}} \cdot 4^{x}$	-
0	$\frac{1}{(\ln (4))^{3}} \cdot 4^{x}$	+
0	$\frac{1}{(\ln (4))^{4}} \cdot 4^{x}$	-

$$
\int x^{2} 4^{x} d x=+\frac{1}{\ln (4)} \cdot 4^{x} \cdot x^{2}-\frac{1}{(\ln (4))^{2}} \cdot 4^{x} \cdot 2 x+\frac{1}{(\ln (4))^{3}} \cdot 4^{x} \cdot 2+C
$$

Math 181, Exam 1, Fall 2012
 Problem 4 Solution

4. Compute the integral $\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$.

Solution: The computation requires the trigonometric substitution $x=2 \sin \theta$, $d x=2 \cos \theta d \theta$. Plugging these into the integral gives us

$$
\begin{aligned}
\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}} & =\int \frac{2 \cos \theta d \theta}{\left(4-(2 \sin \theta)^{2}\right)^{3 / 2}} \\
& =\int \frac{2 \cos \theta}{\left(4-4 \sin ^{2} \theta\right)^{3 / 2}} d \theta \\
& =\int \frac{2 \cos \theta}{\left(4 \cos ^{2} \theta\right)^{3 / 2}} d \theta \\
& =\int \frac{2 \cos \theta}{4^{3 / 2}\left(\cos ^{2} \theta\right)^{3 / 2}} d \theta \\
& =\int \frac{2 \cos \theta}{8 \cos ^{3} \theta} d \theta \\
& =\frac{1}{4} \int \sec ^{2} \theta d \theta \\
& =\frac{1}{4} \tan \theta+C
\end{aligned}
$$

Since $x=2 \sin \theta$ we know that $\sin \theta=\frac{x}{2}$. We can then construct a right triangle where the side opposite the angle θ is x and the hypotenuse is 2 . Using the Pythagorean Theorem, the side adjacent to θ is $\sqrt{4-x^{2}}$.

Thus, the tangent of θ is the ratio of the side opposite θ to the adjacent side.

$$
\tan \theta=\frac{x}{\sqrt{4-x^{2}}}
$$

The integral is then

$$
\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}=\frac{1}{4} \cdot \frac{x}{\sqrt{4-x^{2}}}+C
$$

Math 181, Exam 1, Fall 2012
 Problem 5 Solution

5. Compute the following integrals:
(a) $\int \frac{5}{x^{2}+3 x-4} d x$,
(b) $\int \frac{d x}{x^{2}+4 x+5} d x$.

Solution:

(a) The integrand is a rational function and the denominator factors into $(x+$ $4)(x-1)$. Thus, we may use the method of partial fraction decomposition. Since the denominator has two distinct roots we decompose the integrand as follows:

$$
\frac{5}{(x+4)(x-1)}=\frac{A}{x+4}+\frac{B}{x-1} .
$$

Clearing denominators gives us

$$
5=A(x-1)+B(x+4)
$$

Letting $x=1$ leads to $B=1$ and letting $x=-4$ leads to $A=-1$. Replacing A and B in the decomposition and evaluating the integral gives us:

$$
\begin{aligned}
\int \frac{5}{x^{2}+3 x-4} d x & =\int\left(\frac{-1}{x+4}+\frac{1}{x-1}\right) d x \\
\int \frac{5}{x^{2}+3 x-4} d x & =-\ln |x+4|+\ln |x-1|+C
\end{aligned}
$$

(b) Once again, the integrand is a rational function but the denominator does not factor nicely. Therefore, we resort to completing the square:

$$
x^{2}+4 x+5=(x+2)^{2}+1
$$

We then introduce the substitution $u=x+2, d u=d x$ to convert the integral into:

$$
\int \frac{d x}{x^{2}+4 x+5}=\int \frac{d u}{u^{2}+1}=\arctan (u)+C
$$

Replacing u with $x+2$ gives us our result:

$$
\int \frac{d x}{x^{2}+4 x+5}=\arctan (x+2)+C
$$

