Math 181, Exam 1, Fall 2013
 Problem 1 Solution

1. Compute the integrals
(a) $\int \sin ^{-1}(x) d x$
(b) $\int \frac{d x}{x^{2}(x+1)}$
(c) $\int_{0}^{3} \sqrt{9-x^{2}} d x$

Solution:

(a) Use Integration by Parts to evaluate the integral. Letting $u=\sin ^{-1}(x)$ and $d v=d x$ yields

$$
d u=\frac{1}{\sqrt{1-x^{2}}} d x, \quad v=x
$$

Then we have

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \sin ^{-1}(x) d x & =x \sin ^{-1}(x)-\int \frac{x}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

To evaluate the integral on the right hand side of the above equation, we let $u=1-x^{2}$ and $d u=-2 x d x$ so $-\frac{1}{2} d u=x d x$. Making these substitutions we obtain:

$$
\begin{aligned}
& \int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\int \frac{1}{2 \sqrt{u}} d u \\
& \int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\sqrt{u}+C \\
& \int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\sqrt{1-x^{2}}+C
\end{aligned}
$$

(b) Use the method of partial fractions. The decomposition of the integrand is

$$
\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} .
$$

After clearing denominators we obtain

$$
1=A x(x+1)+B(x+1)+C x^{2}
$$

Letting $x=0$ yields $B=1$ and letting $x=-1$ yields $C=1$. After expanding the right hand side of the above equation we obtain

$$
1=x^{2}(A+C)+x(A+B)+B
$$

Equating the coefficient of x^{2} on both sides of the equation yields $0=A+C$ so $A=-C=-1$. Thus, the decomposition is

$$
\frac{1}{x^{2}(x+1)}=-\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x+1} .
$$

The integral is then

$$
\begin{aligned}
\int \frac{d x}{x^{2}(x+1)} & =\int\left(-\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x+1}\right) d x \\
\int \frac{d x}{x^{2}(x+1)} & =-\ln |x|-\frac{1}{x}+\ln |x+1|+C
\end{aligned}
$$

(c) The integral represents one-fourth of the area of a circle of radius 3. That is,

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x=\frac{1}{4} \pi(3)^{2}=\frac{9 \pi}{4} .
$$

The other method of solution is to use the trigonometric substitution

$$
x=3 \sin \theta, \quad d x=3 \cos \theta d \theta
$$

When $x=0$ we have $\sin \theta=0$ and, thus, $\theta=0$. When $x=3$ we have $\sin \theta=1$ and, thus, $\theta=\frac{\pi}{2}$. The definite integral is then converted and evaluated as follows:

$$
\begin{aligned}
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} \sqrt{9-(3 \sin \theta)^{2}} \cdot 3 \cos \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} \sqrt{9-9 \sin ^{2} \theta} \cdot 3 \cos \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} \sqrt{9\left(1-\sin ^{2} \theta\right)} \cdot 3 \cos \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} \sqrt{9 \cos ^{2} \theta} \cdot 3 \cos \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} 3 \cos \theta \cdot 3 \cos \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\pi / 2} 9 \cos ^{2} \theta d \theta \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=9\left[\frac{\theta}{2}+\frac{\sin (2 \theta)}{4}\right]_{0}^{\pi / 2} \\
& \int_{0}^{3} \sqrt{9-x^{2}} d x=\frac{9 \pi}{4}
\end{aligned}
$$

Math 181, Exam 1, Fall 2013
 Problem 2 Solution

2. Compute the length of the graph of $f(x)=\frac{e^{x}+e^{-x}}{2}$ from $x=0$ to $x=\ln (2)$.

Solution: The arclength formula is

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

where

$$
f^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}
$$

The quantity $1+f^{\prime}(x)^{2}$ simplifies as follows:

$$
\begin{aligned}
& 1+f^{\prime}(x)^{2}=1+\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
& 1+f^{\prime}(x)^{2}=1+\frac{\left(e^{x}-e^{-x}\right)^{2}}{4} \\
& 1+f^{\prime}(x)^{2}=1+\frac{e^{2 x}-2+e^{-2 x}}{4} \\
& 1+f^{\prime}(x)^{2}=\frac{4+e^{2 x}-2+e^{-2 x}}{4} \\
& 1+f^{\prime}(x)^{2}=\frac{e^{2 x}+2+e^{-2 x}}{4} \\
& 1+f^{\prime}(x)^{2}=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}
\end{aligned}
$$

Therefore, the arclength is

$$
\begin{aligned}
& L=\int_{0}^{\ln (2)} \sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}} d x \\
& L=\int_{0}^{\ln (2)} \frac{e^{x}+e^{-x}}{2} d x \\
& L=\left.\frac{e^{x}-e^{-x}}{2}\right|_{0} ^{\ln (2)} \\
& L=\frac{e^{\ln (2)}-e^{-\ln (2)}}{2} \\
& L=\frac{2-\frac{1}{2}}{2} \\
& L=\frac{3}{4}
\end{aligned}
$$

Math 181, Exam 1, Fall 2013

Problem 3 Solution

3. Consider the region enclosed by $y=5-x^{2}$ the y-axis and $y=1$. Find the volume of revolution of the resulting solid, when the region is rotated about:
(a) the x-axis,
(b) the axis $x=-2$.

Solution:

(a) The volume is obtained using the Washer Method. The corresponding formula is

$$
V=\pi \int_{a}^{b} \pi\left[f(x)^{2}-g(x)^{2}\right] d x
$$

A sketch of the region enclosed by the given curves is shown below.

From the sketch of the region, we know that $f(x)=5-x^{2}$ and $g(x)=1$. Thus, the volume is

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left[\left(5-x^{2}\right)^{2}-1^{2}\right] d x \\
V & =\pi \int_{0}^{2}\left(25-10 x^{2}+x^{4}-1\right) d x \\
V & =\pi \int_{0}^{2}\left(x^{4}-10 x^{2}+24\right) d x \\
V & =\pi\left[\frac{1}{5} x^{5}-\frac{10}{3} x^{3}+24 x\right]_{0}^{2} \\
V & =\pi\left[\frac{32}{5}-\frac{80}{3}+48\right] \\
V & =\frac{416 \pi}{15}
\end{aligned}
$$

(b) Upon rotating about the axis $x=-2$, we use the Shell Method to find the corresponding volume. The formula we use is

$$
V=2 \pi \int_{a}^{b}(x+2)[f(x)-g(x)] d x
$$

where the shell radius is $x+2$. Using the definitions of $f(x)$ and $g(x)$ from part (a) we have

$$
\begin{aligned}
& V=2 \pi \int_{0}^{2}(x+2)\left(5-x^{2}-1\right) d x \\
& V=2 \pi \int_{0}^{2}(x+2)\left(4-x^{2}\right) d x \\
& V=2 \pi \int_{0}^{2}\left(4 x-x^{3}+8-2 x^{2}\right) d x \\
& V=2 \pi\left[2 x^{2}-\frac{1}{4} x^{4}+8 x-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& V=2 \pi\left[2(4)-\frac{1}{4}(4)+8(4)-\frac{2}{3}(2)^{3}\right] \\
& V=\frac{88 \pi}{3}
\end{aligned}
$$

Math 181, Exam 1, Fall 2013
 Problem 4 Solution

4. Compute the area of each region below.
(a) the region between $y=x \sqrt{4-x}$ and the x-axis from $x=0$ to $x=3$
(b) the region between the graphs of $y=5-x^{2}$ and $y=3-x$

Solution:

(a) The area of the region is

$$
A=\int_{0}^{3} x \sqrt{4-x} d x
$$

Using the substitution $u=4-x$ we obtain $-d u=d x$ and $x=4-u$. The limits of integration become:

- $x=0 \Rightarrow u=4-0=4$
- $x=3 \Rightarrow u=4-3=1$

Thus, the area is

$$
\begin{aligned}
& A=-\int_{4}^{1}(4-u) \sqrt{u} d u \\
& A=\int_{1}^{4}\left(4 u^{1 / 2}-u^{3 / 2}\right) d u \\
& A=\left[\frac{8}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right]_{1}^{4} \\
& A=\left[\frac{8}{3}(4)^{3 / 2}-\frac{2}{5}(4)^{5 / 2}\right]-\left[\frac{8}{3}(1)^{3 / 2}-\frac{2}{5}(1)^{5 / 2}\right] \\
& A=\frac{64}{3}-\frac{64}{5}-\frac{8}{3}+\frac{2}{5} \\
& A=\frac{94}{15}
\end{aligned}
$$

(b) The graphs intersect when $y=y$. That is,

$$
\begin{aligned}
3-x & =5-x^{2} \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x=2, x & =-1
\end{aligned}
$$

The graph of $y=5-x^{2}$ is above the graph of $y=3-x$ on the interval $-1 \leq x \leq 2$. Therefore, the area is

$$
\begin{aligned}
& A=\int_{-1}^{2}\left[\left(5-x^{2}\right)-(3-x)\right] d x \\
& A=\int_{-1}^{2}\left(2+x-x^{2}\right) d x \\
& A=\left[2 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{-1}^{2} \\
& A=\left[2(2)+\frac{1}{2}(2)^{2}-\frac{1}{3}(2)^{3}\right]-\left[2(-1)+\frac{1}{2}(-1)^{2}-\frac{1}{3}(-1)^{3}\right] \\
& A=4+2-\frac{8}{3}+2-\frac{1}{2}-\frac{1}{3} \\
& A=\frac{9}{2}
\end{aligned}
$$

Math 181, Exam 1, Fall 2013
 Problem 5 Solution

5. Evaluate the indefinite integral

$$
\int \frac{d x}{e^{2 x}+e^{x}}
$$

Consider using the substitution $u=e^{x}$.
Solution: Letting $u=e^{x}$ yields $d u=e^{x} d x$. In other words, $\frac{d u}{u}=d x$ since $u=e^{x}$. The integral converts as follows:

$$
\int \frac{d x}{e^{2 x}+e^{x}}=\int \frac{d u / u}{u^{2}+u}=\int \frac{d u}{u\left(u^{2}+u\right)}=\int \frac{d u}{u^{2}(u+1)}
$$

This integral was solved in Problem 1(b). The answer is

$$
\int \frac{d u}{u^{2}(u+1)}=-\ln |u|-\frac{1}{u}+\ln |u+1|+C
$$

Using the fact that $u=e^{x}$ yields

$$
\int \frac{d x}{e^{2 x}+e^{x}}=-\ln \left|e^{x}\right|-\frac{1}{e^{x}}+\ln \left|e^{x}+1\right|+C
$$

