Math 181, Exam 1, Fall 2014
 Problem 1 Solution

1. Consider the functions

$$
f(x)=2 x^{2}-6 x \quad \text { and } \quad g(x)=6 x^{2}-4 .
$$

a. Find the x-coordinate of the intersection points of these two graphs.
b. Compute the area of the region bounded by the graphs of the functions $f(x)$ and $g(x)$.

Solution:

a. The x-coordinates of the intersection points are solutions to the equation $f(x)=g(x)$.

$$
\begin{aligned}
2 x^{2}-6 x & =6 x^{2}-4 \\
-4 x^{2}-6 x+4 & =0 \\
-2\left(2 x^{2}+3 x-2\right) & =0 \\
2 x^{2}+3 x-2 & =0 \\
(x+2)(2 x-1) & =0 \\
x=-2, \quad x & =\frac{1}{2}
\end{aligned}
$$

b. Since $f(x) \geq g(x)$ on the interval $\left[-2, \frac{1}{2}\right]$, the area enclosed by the curves is:

$$
\begin{aligned}
& A=\int_{a}^{b}[f(x)-g(x)] d x \\
& A=\int_{-2}^{1 / 2}\left[\left(2 x^{2}-6 x\right)-\left(6 x^{2}-4\right)\right] d x \\
& A=\int_{-2}^{1 / 2}\left(-4 x^{2}-6 x+4\right) d x \\
& A=\left[-\frac{4}{3} x^{3}-3 x^{2}+4 x\right]_{-2}^{1 / 2} \\
& A=\left[-\frac{4}{3}\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)\right]-\left[-\frac{4}{3}(-2)^{3}-3(-2)^{2}+4(-2)\right] \\
& A=\frac{125}{12}
\end{aligned}
$$

Math 181, Exam 1, Fall 2014

Problem 2 Solution
2. Evaluate the following integrals. Be sure to specify which integration method(s) you are using and to show your work!
a. $\int x^{2} e^{2 x} d x$
b. $\int \frac{x+1}{x^{2}+9} d x$

Solution:

a. We use integration by parts to evaluate the integral. The corresponding formula is:

$$
\int u d v=u v-\int v d u
$$

Letting $u=x^{2}$ and $d v=e^{2 x} d x$ yields $u=2 x d x$ and $v=\frac{1}{2} e^{2 x}$. Thus, we have

$$
\int x^{2} e^{2 x} d x=\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} \int x e^{2 x} d x
$$

The integral on the right hand side is evaluated using integration by parts. Letting $u=x$ and $d v=e^{2 x} d x$ yields $d u=d x$ and $v=\frac{1}{2} e^{2 x}$. Thus, we have

$$
\begin{aligned}
& \int x^{2} e^{2 x}=\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right) \\
& \int x^{2} e^{2 x}=\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right)+C \\
& \int x^{2} e^{2 x}=\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C
\end{aligned}
$$

b. We begin by splitting the integrand into a sum of two rational functions and then use the sum rule for integrals.

$$
\begin{equation*}
\int \frac{x+1}{x^{2}+9} d x=\int \frac{x}{x^{2}+9} d x+\int \frac{1}{x^{2}+9} d x \tag{1}
\end{equation*}
$$

The first integral on the right hand side of Equation (1) may be evaluated using the substitution $u=x^{2}+9, \frac{1}{2} d u=x d x$. These substitutions yield the result:

$$
\int \frac{x}{x^{2}+9} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|=\frac{1}{2} \ln \left|x^{2}+9\right|
$$

An algebraic manipulation of the second integral yields:

$$
\int \frac{1}{x^{2}+9} d x=\int \frac{1}{9\left(\frac{x^{2}}{9}+1\right)} d x=\frac{1}{9} \int \frac{1}{\left(\frac{x}{3}\right)^{2}+1} d x
$$

Using the substitution $u=\frac{x}{3}, 3 d u=d x$ yields the result:

$$
\int \frac{1}{x^{2}+9} d x=\frac{1}{9} \int \frac{1}{u^{2}+1}(3 d u)=\frac{1}{3} \int \frac{1}{u^{2}+1} d u=\frac{1}{3} \arctan (u)=\frac{1}{3} \arctan \left(\frac{x}{3}\right)
$$

Thus, the integral is:

$$
\int \frac{x+1}{x^{2}+9} d x=\frac{1}{2} \ln \left|x^{2}+9\right|+\frac{1}{3} \arctan \left(\frac{x}{3}\right)+C
$$

Math 181, Exam 1, Fall 2014

Problem 3 Solution
3.
a. Write the general formula for the length of the graph of a function $f(x)$ between $x=a$ and $x=b$.
b. Find the length of the graph of the function $f(x)=\frac{2}{x}+\frac{x^{3}}{24}$ between $x=1$ and $x=3$.

Solution:

a. The arclength of $f(x)$ on $[a, b]$ is:

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

b. The derivative $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=-\frac{2}{x^{2}}+\frac{x^{2}}{8}
$$

The expression $\sqrt{1+f^{\prime}(x)^{2}}$ simplifies as follows:

$$
\begin{aligned}
\sqrt{1+f^{\prime}(x)^{2}} & =\sqrt{1+\left(-\frac{2}{x^{2}}+\frac{x^{2}}{8}\right)^{2}} \\
& =\sqrt{1+\frac{4}{x^{4}}-\frac{1}{2}+\frac{x^{4}}{64}} \\
& =\sqrt{\frac{4}{x^{4}}+\frac{1}{2}+\frac{x^{4}}{64}} \\
& =\sqrt{\left(\frac{2}{x^{2}}+\frac{x^{2}}{8}\right)^{2}} \\
& =\frac{2}{x^{2}}+\frac{x^{2}}{8}
\end{aligned}
$$

The arclength of $f(x)$ on $[1,3]$ is:

$$
\begin{aligned}
L & =\int_{1}^{3} \sqrt{1+f^{\prime}(x)^{2}} d x \\
L & =\int_{1}^{3}\left(\frac{2}{x^{2}}+\frac{x^{2}}{8}\right) d x \\
L & =\left[-\frac{2}{x}+\frac{x^{3}}{24}\right]_{1}^{3} \\
L & =\left[-\frac{2}{3}+\frac{3^{3}}{24}\right]-\left[-\frac{2}{1}+\frac{1^{3}}{24}\right] \\
L & =\frac{29}{12}
\end{aligned}
$$

Math 181, Exam 1, Fall 2014
 Problem 4 Solution

4. Let R be the region bounded by the graphs of the functions

$$
y=x^{4} \quad \text { and } \quad y=\sqrt{x}
$$

and consider the solid of revolution obtained by revolving R about the x-axis.
a. Compute the volume V of this solid of revolution using slices.
b. Compute the volume V of this solid of revolution using shells.

Solution: The curves intersect when $x^{4}=\sqrt{x}$. After squaring both sides we obtain $x^{8}=x$. Subtracting x from both sides of the equation and factoring out an x yields $x\left(x^{7}-1\right)=0$. Thus, the two real solutions are $x=0$ and $x=1$. The coordinates of the intersection points are $(0,0)$ and (1,1). Moreover, we have $\sqrt{x} \geq x^{4}$ on the interval $0 \leq x \leq 1$.
a. The cross-sections of this solid are washers. The corresponding volume formula is:

$$
V=\int_{a}^{b} \pi\left[f(x)^{2}-g(x)^{2}\right] d x
$$

where $a=0, b=1, f(x)=\sqrt{x}$, and $g(x)=x^{4}$. Thus, the volume V is:

$$
\begin{aligned}
& V=\int_{0}^{1} \pi\left[(\sqrt{x})^{2}-\left(x^{4}\right)^{2}\right] d x \\
& V=\pi \int_{0}^{1}\left(x-x^{8}\right) d x \\
& V=\pi\left[\frac{1}{2} x^{2}-\frac{1}{9} x^{9}\right]_{0}^{1} \\
& V=\pi\left(\frac{1}{2}-\frac{1}{9}\right) \\
& V=\frac{7 \pi}{18}
\end{aligned}
$$

b. In order to use shells we write the equations for the bounding curves as $x=y^{2}$ and $x=y^{1 / 4}$. The volume formula for the shell method is:

$$
V=\int_{c}^{d} 2 \pi y[p(y)-g(y)] d y
$$

where $c=0, d=1, p(y)=y^{1 / 4}$, and $q(y)=y^{2}$. Thus, the volume is:

$$
\begin{aligned}
& V=\int_{0}^{1} 2 \pi y\left(y^{1 / 4}-y^{2}\right) d y \\
& V=\int_{0}^{1} 2 \pi\left(y^{5 / 4}-y^{3}\right) d y \\
& V=2 \pi\left[\frac{4}{9} y^{9 / 4}-\frac{1}{4} y^{4}\right]_{0}^{1} \\
& V=2 \pi\left(\frac{4}{9}-\frac{1}{4}\right) \\
& V=\frac{7 \pi}{18}
\end{aligned}
$$

Math 181, Exam 1, Fall 2014

Problem 5 Solution
5. Evaluate the following integrals. Be sure to specify which integration method(s) you are using and to show your work!
a. $\int x \ln (x) d x$
b. $\int x^{3} \sin \left(x^{2}\right) d x$

Solution:

a. We use integration by parts to evaluate the integral. The corresponding formula is:

$$
\int u d v=u v-\int v d u
$$

Letting $u=\ln (x)$ and $d v=x d x$ yields $u=\frac{1}{x} d x$ and $v=\frac{1}{2} x^{2}$. Thus, we have

$$
\begin{aligned}
\int x \ln (x) d x & =\frac{1}{2} x^{2} \ln (x)-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}+C
\end{aligned}
$$

b. We begin by rewriting the integral as follows:

$$
\int x^{3} \sin \left(x^{2}\right) d x=\int x \cdot x^{2} \sin \left(x^{2}\right) d x
$$

We use the substitution $u=x^{2}, \frac{1}{2} d u=x d x$ to obtain the result:

$$
\int x^{3} \sin \left(x^{2}\right) d x=\frac{1}{2} \int u \sin (u) d u
$$

The integral on the right hand side above must be computed using integration by parts. Letting $w=u$ and $d v=\sin (u) d u$ yields $d w=d u$ and $v=-\cos (u)$. The integration by parts formula:

$$
\int w d v=w v-\int v d w
$$

yields the result:

$$
\begin{aligned}
\int x^{3} \sin \left(x^{2}\right) d x & =\frac{1}{2} \int u \sin (u) d u \\
& =\frac{1}{2}\left[-u \cos (u)-\int(-\cos (u)) d u\right] \\
& =\frac{1}{2}(-u \cos (u)+\sin (u))+C \\
& =\frac{1}{2}\left(-x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)\right)+C
\end{aligned}
$$

Math 181, Exam 1, Fall 2014 Problem 6 Solution

6. Consider the region bounded by the curves $y=(x-2)^{2}-1, x=0$, and $y=0$. Find the volume of revolution of the resulting solid, when the region is rotated about:
a. (4 points) the y-axis
b. (4 points) the axis $y=4$.

You may use either slices or shells to compute these volumes, as you prefer.

Solution:

a. The volume of the solid obtained when rotating about the y-axis is best found using shells. The corresponding formula is

$$
V=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x .
$$

The region is bounded on the left by $x=0$, from below by $y=0=g(x)$, and from above by $y=(x-2)^{2}-1=f(x)$. The latter curves intersect at $x=1$. Thus, the limits of integration are $a=0$ and $b=1$. The volume is then

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x \\
& =\int_{0}^{1} 2 \pi x\left[(x-2)^{2}-1-0\right] d x \\
& =2 \pi \int_{0}^{1} x\left(x^{2}-4 x+3\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{3}-4 x^{2}+3 x\right) d x \\
& =2 \pi\left[\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}\right]_{0}^{1} \\
& =2 \pi\left[\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right] \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

b. The volume of the solid obtained when rotating about the axis $y=4$ is best found using washers. The inner radii of the washers are given by $r=4-\left[(x-2)^{2}-1\right]$ and the outer radii of the washers are given by $R=4$. Using the same limits of integration as in part
a., the volume of this solid is

$$
\begin{aligned}
V & =\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x \\
& =\int_{0}^{1} \pi\left[4^{2}-\left(4-\left((x-2)^{2}-1\right)\right)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[16-\left(4-\left(x^{2}-4 x+3\right)\right)^{2}\right] d x \\
& \left.=\pi \int_{0}^{1}\left[16-\left(-x^{2}+4 x+1\right)\right)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[16-\left(x^{4}-8 x^{3}+14 x^{2}+8 x+1\right)\right] d x \\
& =\pi \int_{0}^{1}\left(-x^{4}+8 x^{3}-14 x^{2}-8 x+15\right) d x \\
& =\pi\left[-\frac{1}{5} x^{5}+2 x^{4}-\frac{14}{3} x^{3}-4 x^{2}+15 x\right]_{0}^{1} \\
& =\pi\left[-\frac{1}{5}+2-\frac{14}{3}-4+15\right] \\
& =\frac{122 \pi}{15}
\end{aligned}
$$

