Math 181, Exam 1, Spring 2006
 Problem 1 Solution

1. The graph of a function $g(x)$ is given below. Let G be an antiderivative for g on the interval $[0,5]$ with $G(1)=2$. Compute $G(0), G(3)$, and $G(5)$.

Solution: Since G is an antiderivative of g we know that $G^{\prime}(x)=g(x)$. That is,

$$
G(x)=\int g(x) d x
$$

where

$$
g(x)=\left\{\begin{array}{cc}
x-1 & \text { if } 0 \leq x<3 \\
2 & \text { if } 3 \leq x<4 \\
-2 x+10 & \text { if } 4 \leq x \leq 5
\end{array}\right.
$$

- On the interval $0 \leq x<3$, we have $g(x)=x-1$. Therefore,

$$
\begin{aligned}
& G(x)=\int(x-1) d x \\
& G(x)=\frac{1}{2} x^{2}-x+C_{1}
\end{aligned}
$$

The value of C_{1} is found by using the fact that $G(1)=2$.

$$
\begin{aligned}
G(1) & =2 \\
\frac{1}{2}(1)^{2}-1+C_{1} & =2 \\
C_{1} & =\frac{5}{2}
\end{aligned}
$$

Therefore, on the interval $0 \leq x<3$ we have $G(x)=\frac{1}{2} x^{2}-x+\frac{5}{2}$ and, thus, $G(0)=\frac{5}{2}$.

- On the interval $3 \leq x<4$, we have $g(x)=2$. Therefore,

$$
\begin{aligned}
& G(x)=\int 2 d x \\
& G(x)=2 x+C_{2}
\end{aligned}
$$

The value of C_{2} is found by ensuring continuity of $G(x)$ at $x=3$. That is, we need:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} G(x) & =\lim _{x \rightarrow 3^{+}} G(x) \\
\lim _{x \rightarrow 3^{-}}\left(\frac{1}{2} x^{2}-x+\frac{5}{2}\right) & =\lim _{x \rightarrow 3^{+}}\left(2 x+C_{2}\right) \\
\frac{1}{2}(3)^{2}-3+\frac{5}{2} & =2(3)+C_{2} \\
C_{2} & =-2
\end{aligned}
$$

Therefore, on the interval $3 \leq x<4$ we have $G(x)=2 x-2$ and, thus, $G(3)=4$

- On the interval $4 \leq x \leq 5$, we have $g(x)=-2 x+10$. Therefore,

$$
\begin{aligned}
& G(x)=\int(-2 x+10) d x \\
& G(x)=-x^{2}+10 x+C_{3}
\end{aligned}
$$

The value of C_{3} is found by ensuring continuity of $G(x)$ at $x=4$. That is, we need:

$$
\begin{aligned}
\lim _{x \rightarrow 4^{-}} G(x) & =\lim _{x \rightarrow 4^{+}} G(x) \\
\lim _{x \rightarrow 4^{-}}(2 x-2) & =\lim _{x \rightarrow 4^{+}}\left(-x^{2}+10 x+C_{3}\right) \\
2(4)-2 & =-(4)^{2}+10(4)+C_{3} \\
C_{3} & =-18
\end{aligned}
$$

Therefore, on the interval $4 \leq x \leq 5$ we have $G(x)=-x^{2}+10 x-18$ and, thus, $G(5)=7$

The graphs of both $G(x)$ (left) and $g(x)$ (right) are shown below.

Math 181, Exam 1, Spring 2006
 Problem 2 Solution

2. On the planet Penthesilea IV, the gravitational acceleration is $-20 \mathrm{ft} / \mathrm{sec}^{2}$. A stone is thrown upwards from a height of 60 ft with initial velocity $100 \mathrm{ft} / \mathrm{sec}$.
i) When will the stone reach its maximum height?
ii) What is the maximum height reached by the stone?

Solution:

i) The velocity of the stone is given by:

$$
v(t)=-g t+v_{0}
$$

where $g=-20 \mathrm{ft} / \mathrm{sec}^{2}$ is the gravitational acceleration and $v_{0}=100 \mathrm{ft} / \mathrm{sec}$ is the initial velocity. When the stone reaches its maximum height, its velocity is 0 . The time when this happens is then:

$$
\begin{aligned}
v(t) & =0 \\
-20 t+100 & =0 \\
t & =5 \mathrm{sec}
\end{aligned}
$$

ii) The height of the stone is given by:

$$
x(t)=-\frac{1}{2} g t^{2}+v_{0} t+x_{0}
$$

where $x_{0}=60 \mathrm{ft}$ is the initial height. Evaluating $x(t)$ at $t=5 \mathrm{sec}$ we get:

$$
x(5)=-\frac{1}{2}(20)(5)^{2}+100(5)+60=310 \mathrm{ft}
$$

Math 181, Exam 1, Spring 2006 Problem 3 Solution

3. Differentiate the function:

$$
T(x)=\int_{1}^{\cos x} e^{t^{2}} d t
$$

Solution: Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative $T^{\prime}(x)$ is:

$$
\begin{aligned}
T^{\prime}(x) & =\frac{d}{d x} \int_{1}^{\cos x} e^{t^{2}} d t \\
& =e^{(\cos x)^{2}} \cdot \frac{d}{d x} \cos x \\
& =e^{(\cos x)^{2}} \cdot(-\sin x)
\end{aligned}
$$

Math 181, Exam 1, Spring 2006
 Problem 4 Solution

4. Compute the definite integral:

$$
\int_{0}^{1} x e^{2 x} d x
$$

Solution: We will evaluate the integral using Integration by Parts. Let $u=x$ and $v^{\prime}=e^{2 x}$. Then $u^{\prime}=1$ and $v=\frac{1}{2} e^{2 x}$. Using the Integration by Parts formula:

$$
\int_{a}^{b} u v^{\prime} d x=[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int_{0}^{1} x e^{2 x} d x & =\left[\frac{1}{2} x e^{2 x}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{2} e^{2 x} d x \\
& =\left[\frac{1}{2} x e^{2 x}\right]_{0}^{1}-\left[\frac{1}{4} e^{2 x}\right]_{0}^{1} \\
& =\left(\frac{1}{2} e^{2}-0\right)-\left(\frac{1}{4} e^{2}-\frac{1}{4}\right) \\
& =\frac{1}{4} e^{2}+\frac{1}{4}
\end{aligned}
$$

Math 181, Exam 1, Spring 2006
 Problem 5 Solution

5. Find:

$$
\int \frac{x}{\sqrt{x+4}} d x
$$

Solution: We will evaluate the integral using the u-substitution method. Let $u=x+4$ so that $d u=d x$ and $x=u-4$. Substituting these expressions into the given integral and evaluating we get:

$$
\begin{aligned}
\int \frac{x}{\sqrt{x+4}} d x & =\int \frac{u-4}{\sqrt{u}} d u \\
& =\int\left(\frac{u}{\sqrt{u}}-\frac{4}{\sqrt{u}}\right) d u \\
& =\int\left(u^{1 / 2}-4 u^{-1 / 2}\right) d u \\
& =\frac{2}{3} u^{3 / 2}-8 u^{1 / 2}+C \\
& =\frac{2}{3}(x+4)^{3 / 2}-8(x+4)^{1 / 2}+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2006
 Problem 6 Solution

6. Find:

$$
\int \frac{d x}{x^{2}-3 x+2}
$$

Solution: We will evaluate the integral using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$
\frac{1}{x^{2}-3 x+2}=\frac{1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}
$$

Next, we multiply the above equation by $(x-1)(x-2)$ to get:

$$
1=A(x-2)+B(x-1)
$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select $x=1$ and $x=2$ for simplicity.

$$
\begin{array}{ll}
x=1: & A(1-2)+B(1-1)=1 \quad \\
x=2: & A(2-2)+B(2-1)=1 \quad
\end{array} \quad \Rightarrow \quad B=-1 .
$$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{d x}{x^{2}-3 x+2} & =\int\left(\frac{A}{x-1}+\frac{B}{x-2}\right) d x \\
& =\int\left(\frac{-1}{x-1}+\frac{1}{x-2}\right) d x \\
& =-\ln |x-1|+\ln |x-2|+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2006
 Problem 7 Solution

7. Compute the definite integral:

$$
\int x^{6} \ln x d x
$$

Solution: We will evaluate the integral using Integration by Parts. Let $u=\ln x$ and $v^{\prime}=x^{6}$. Then $u^{\prime}=\frac{1}{x}$ and $v=\frac{1}{7} x^{7}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int x^{6} \ln x d x & =\frac{1}{7} x^{7} \ln x-\int\left(\frac{1}{x}\right)\left(\frac{1}{7} x^{7}\right) d x \\
& =\frac{1}{7} x^{7} \ln x-\frac{1}{7} \int x^{6} d x \\
& =\frac{1}{7} x^{7} \ln x-\frac{1}{49} x^{7}+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2006
 Problem 8 Solution

8. Find:

$$
\int \arctan x d x
$$

Solution: We will evaluate the integral using Integration by Parts. Let $u=\arctan x$ and $v^{\prime}=1$. Then $u^{\prime}=\frac{1}{x^{2}+1}$ and $v=x$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\int \arctan x d x=x \arctan x-\int \frac{1}{x^{2}+1} x d x
$$

Use the substitution $w=x^{2}+1$ to evaluate the integral on the right hand side. Then $d w=2 x d x \Rightarrow \frac{1}{2} d w=x d x$ and we get:

$$
\begin{aligned}
\int \arctan x d x & =x \arctan x-\int \frac{x}{x^{2}+1} d x \\
& =x \arctan x-\frac{1}{2} \int \frac{1}{w} d w \\
& =x \arctan x-\frac{1}{2} \ln |w|+C \\
& =x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+C
\end{aligned}
$$

Note that the absolute value signs aren't needed because $x^{2}+1>0$ for all x.

