## Math 181, Exam 1, Spring 2008 <br> Problem 1 Solution

1. Consider the region enclosed by the curves $y=2 x$ and $x+y^{2}=3$.
(a) Sketch the region.
(b) Find the points of intersection (determine both the $x$ and $y$ coordinates for each point).
(c) Compute the area enclosed by the curves.

## Solution:

(a) The region is sketched below.

(b) The points of intersection are found by plugging $y=2 x$ into $x+y^{2}=3$ and solving for $x$.

$$
\begin{aligned}
x+y^{2} & =3 \\
x+(2 x)^{2} & =3 \\
4 x^{2}+x-3 & =0 \\
(4 x-3)(x+1) & =0 \\
x=\frac{3}{4}, x & =-1
\end{aligned}
$$

The corresponding $y$-values are found by plugging the above $x$-values into the equation $y=2 x$. Therefore,

$$
\begin{gathered}
x=\frac{3}{4}: y=2 x=2\left(\frac{3}{4}\right)=\frac{3}{2} \\
x=-1: y=2 x=2(-1)=-2
\end{gathered}
$$

(c) The formula we use to compute the area of the region is:

$$
\text { Area }=\int_{c}^{d}(\text { right }- \text { left }) d y
$$

where $c$ and $d$ are the $y$-coordinates of the points of intersection of the two curves. From the graph we see that the right curve is $x=3-y^{2}$ and the left curve is $x=\frac{y}{2}$. The limits of integration are $c=-2$ and $d=\frac{3}{2}$, as found in part (b). Therefore, the area is:

$$
\begin{aligned}
\text { Area } & =\int_{c}^{d}(\text { right }- \text { left }) d y \\
& =\int_{-2}^{3 / 2}\left[\left(3-y^{2}\right)-\frac{y}{2}\right] d y \\
& =\left[3 y-\frac{1}{3} y^{3}-\frac{1}{4} y^{2}\right]_{-2}^{3 / 2} \\
& =\left[3\left(\frac{3}{2}\right)-\frac{1}{3}\left(\frac{3}{2}\right)^{3}-\frac{1}{4}\left(\frac{3}{2}\right)^{2}\right]-\left[3(-2)-\frac{1}{3}(-2)^{3}-\frac{1}{4}(-2)^{2}\right] \\
& =\left[\frac{9}{2}-\frac{9}{8}-\frac{9}{16}\right]-\left[-6+\frac{8}{3}-1\right] \\
& =\frac{343}{48}
\end{aligned}
$$

## Math 181, Exam 1, Spring 2008 <br> Problem 2 Solution

2. Compute the following indefinite integrals.
(a) $\int x \sqrt{x-1} d x$
(b) $\int \frac{5}{\sqrt{1-25 x^{2}}} d x$

## Solution:

(a) The integral is computed using the $u$-substitution method. Let $u=x-1$. Then $d u=d x$ and $x=u+1$. Substituting these into the integral and evaluating we get:

$$
\begin{aligned}
\int x \sqrt{x-1} d x & =\int(u+1) \sqrt{u} d u \\
& =\int\left(u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C
\end{aligned}
$$

(b) The integral is computed using the $u$-substitution method. Let $u=5 x$. Then $d u=5 d x$ and we get:

$$
\begin{aligned}
\int \frac{5}{\sqrt{1-25 x^{2}}} d x & =\int \frac{5}{\sqrt{1-(5 x)^{2}}} d x \\
& =\int \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\arcsin u+C \\
& =\arcsin (5 x)+C
\end{aligned}
$$

## Math 181, Exam 1, Spring 2008 <br> Problem 3 Solution

3. Find the volume of the solid of revolution obtained by rotating the region under the curve $y=x^{2}+1$ over the interval $0 \leq x \leq 1$ :
(a) about the $x$-axis,
(b) about the $y$-axis

## Solution:


(a) We find the volume of the solid obtained by rotating about the $x$-axis using the Disk Method. We use the Disk Method because the region is bounded below by the $x$-axis. In this case, the variable of integration is $x$ and the corresponding formula is:

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

where $f(x)=x^{2}+1$. The volume is then:

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(x^{2}+1\right)^{2} d x \\
& =\pi \int_{0}^{1}\left(x^{4}+2 x^{2}+1\right) d x \\
& =\pi\left[\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+x\right]_{0}^{1} \\
& =\pi\left[\frac{1}{5}+\frac{2}{3}+1\right] \\
& =\frac{28 \pi}{15}
\end{aligned}
$$

(b) We find the volume of the solid obtained by rotating about the $y$-axis using the Shell Method. In this case, the variable of integration is $x$ and the corresponding formula is:

$$
V=2 \pi \int_{a}^{b} x(\text { top }- \text { bottom }) d x
$$

The top curve is $y=x^{2}+1$ and the bottom curve is $y=0$. The volume is then:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1} x\left(x^{2}+1-0\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{3}+x\right) d x \\
& =2 \pi\left[\frac{1}{4} x^{4}+\frac{1}{2} x^{2}\right]_{0}^{1} \\
& =2 \pi\left[\frac{1}{4}+\frac{1}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

## Math 181, Exam 1, Spring 2008 <br> Problem 4 Solution

4. Compute each of the following:
(a) $\int_{1}^{4}\left(\frac{1}{x}-x^{3 / 2}\right) d x$
(b) $\frac{d}{d x} \int_{1}^{x^{2}} \tan (\sqrt{t}) d t$

## Solution:

(a) Using the Fundamental Theorem of Calculus Part I, the value of the integral is:

$$
\begin{aligned}
\int_{1}^{4}\left(\frac{1}{x}-x^{3 / 2}\right) d x & =\left[\ln |x|-\frac{2}{5} x^{5 / 2}\right]_{1}^{4} \\
& =\left[\ln |4|-\frac{2}{5}(4)^{5 / 2}\right]-\left[\ln |1|-\frac{2}{5}(1)^{5 / 2}\right] \\
& =\ln 4-\frac{64}{5}-0+\frac{2}{5} \\
& =\ln 4-\frac{62}{5}
\end{aligned}
$$

(b) Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative is:

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{1}^{x^{2}} \tan (\sqrt{t}) d t \\
& =\tan \left(\sqrt{x^{2}}\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\tan (|x|) \cdot(2 x)
\end{aligned}
$$

## Math 181, Exam 1, Spring 2008 <br> Problem 5 Solution

5. Suppose you have money invested in a bank account with an interest rate of $k$. Let $y_{0}$ denote the initial amount invested and $y(t)$ denote the amount in the account after $t$ years. The interest is compounded continuously so that:

$$
y(t)=y_{0} e^{k t}
$$

(a) At what interest rate should $\$ 1000$ be invested so that there is $\$ 1500$ in the account after 10 years?
(b) If the interest rate is 5\%, how many years will it take for your initial investment to double?

Use the approximations $\ln 2 \approx 0.7$ and $\ln 3 \approx 1.1$ to write your answer to (a) as an integer percent (for example, 8\%) and your answer to (b) as an integer.

## Solution:

(a) The initial amount invested is $y_{0}=1000$. After 10 years we have $y(10)=1500$. Using the above formula and solving for $k$ we have:

$$
\begin{aligned}
y(10) & =y_{0} e^{k(10)} \\
1500 & =1000 e^{10 k} \\
\frac{1500}{1000} & =e^{10 k} \\
e^{10 k} & =\frac{3}{2} \\
10 k & =\ln \frac{3}{2} \\
k & =\frac{1}{10} \ln \frac{3}{2}
\end{aligned}
$$

In order to use the approximations to turn our answer into a percentage, we must use the logarithm rule:

$$
\ln \frac{b}{a}=\ln b-\ln a
$$

Therefore,

$$
\begin{aligned}
k & =\frac{1}{10} \ln \frac{3}{2} \\
& =\frac{1}{10}(\ln 3-\ln 2) \\
& \approx \frac{1}{10}(1.1-0.7) \\
& \approx 0.04 \\
& \approx 4 \%
\end{aligned}
$$

(b) Using $k=0.05$, we must find the value of $t$ so that $y(t)=2 y_{0}$.

$$
\begin{aligned}
y(t) & =y_{0} e^{0.05 t} \\
2 y_{0} & =y_{0} e^{0.05 t} \\
2 & =e^{0.05 t} \\
0.05 t & =\ln 2 \\
t & =20 \ln 2 \\
& \approx 20(0.7) \\
& \approx 14 \text { years }
\end{aligned}
$$

