### Math 181, Exam 1, Spring 2008 Problem 1 Solution

- 1. Consider the region enclosed by the curves y = 2x and  $x + y^2 = 3$ .
  - (a) Sketch the region.
  - (b) Find the points of intersection (determine both the x and y coordinates for each point).
  - (c) Compute the area enclosed by the curves.

#### Solution:

(a) The region is sketched below.



(b) The points of intersection are found by plugging y = 2x into  $x + y^2 = 3$  and solving for x.

$$x + y^{2} = 3$$
  

$$x + (2x)^{2} = 3$$
  

$$4x^{2} + x - 3 = 0$$
  

$$(4x - 3)(x + 1) = 0$$
  

$$x = \frac{3}{4}, x = -1$$

The corresponding y-values are found by plugging the above x-values into the equation y = 2x. Therefore,

$$x = \frac{3}{4}: y = 2x = 2\left(\frac{3}{4}\right) = \frac{3}{2}$$
$$x = -1: y = 2x = 2(-1) = -2$$

(c) The formula we use to compute the area of the region is:

Area = 
$$\int_{c}^{d} (\text{right} - \text{left}) \, dy$$

where c and d are the y-coordinates of the points of intersection of the two curves. From the graph we see that the right curve is  $x = 3 - y^2$  and the left curve is  $x = \frac{y}{2}$ . The limits of integration are c = -2 and  $d = \frac{3}{2}$ , as found in part (b). Therefore, the area is:

Area = 
$$\int_{c}^{d} (\text{right} - \text{left}) \, dy$$
  
=  $\int_{-2}^{3/2} \left[ (3 - y^2) - \frac{y}{2} \right] \, dy$   
=  $\left[ 3y - \frac{1}{3}y^3 - \frac{1}{4}y^2 \right]_{-2}^{3/2}$   
=  $\left[ 3\left(\frac{3}{2}\right) - \frac{1}{3}\left(\frac{3}{2}\right)^3 - \frac{1}{4}\left(\frac{3}{2}\right)^2 \right] - \left[ 3(-2) - \frac{1}{3}(-2)^3 - \frac{1}{4}(-2)^2 \right]$   
=  $\left[ \frac{9}{2} - \frac{9}{8} - \frac{9}{16} \right] - \left[ -6 + \frac{8}{3} - 1 \right]$   
=  $\left[ \frac{343}{48} \right]$ 

## Math 181, Exam 1, Spring 2008 Problem 2 Solution

2. Compute the following indefinite integrals.

(a) 
$$\int x\sqrt{x-1} \, dx$$
  
(b) 
$$\int \frac{5}{\sqrt{1-25x^2}} \, dx$$

# Solution:

(a) The integral is computed using the *u*-substitution method. Let u = x - 1. Then du = dx and x = u + 1. Substituting these into the integral and evaluating we get:

$$\int x\sqrt{x-1} \, dx = \int (u+1)\sqrt{u} \, du$$
$$= \int \left(u^{3/2} + u^{1/2}\right) \, du$$
$$= \frac{2}{5}u^{5/2} + \frac{2}{3}u^{3/2} + C$$
$$= \boxed{\frac{2}{5}(x-1)^{5/2} + \frac{2}{3}(x-1)^{3/2} + C}$$

(b) The integral is computed using the *u*-substitution method. Let u = 5x. Then du = 5 dx and we get:

$$\int \frac{5}{\sqrt{1 - 25x^2}} dx = \int \frac{5}{\sqrt{1 - (5x)^2}} dx$$
$$= \int \frac{1}{\sqrt{1 - u^2}} du$$
$$= \arcsin u + C$$
$$= \boxed{\arcsin(5x) + C}$$

#### Math 181, Exam 1, Spring 2008 Problem 3 Solution

3. Find the volume of the solid of revolution obtained by rotating the region under the curve  $y = x^2 + 1$  over the interval  $0 \le x \le 1$ :

- (a) about the *x*-axis,
- (b) about the *y*-axis

Solution:



(a) We find the volume of the solid obtained by rotating about the x-axis using the **Disk** Method. We use the Disk Method because the region is bounded below by the x-axis. In this case, the variable of integration is x and the corresponding formula is:

$$V = \pi \int_{a}^{b} f(x)^{2} \, dx$$

where  $f(x) = x^2 + 1$ . The volume is then:

$$V = \pi \int_0^1 (x^2 + 1)^2 dx$$
  
=  $\pi \int_0^1 (x^4 + 2x^2 + 1) dx$   
=  $\pi \left[ \frac{1}{5}x^5 + \frac{2}{3}x^3 + x \right]_0^1$   
=  $\pi \left[ \frac{1}{5} + \frac{2}{3} + 1 \right]$   
=  $\left[ \frac{28\pi}{15} \right]$ 

(b) We find the volume of the solid obtained by rotating about the y-axis using the Shell Method. In this case, the variable of integration is x and the corresponding formula is:

$$V = 2\pi \int_{a}^{b} x \left( \text{top} - \text{bottom} \right) \, dx$$

The top curve is  $y = x^2 + 1$  and the bottom curve is y = 0. The volume is then:

$$V = 2\pi \int_0^1 x(x^2 + 1 - 0) \, dx$$
  
=  $2\pi \int_0^1 (x^3 + x) \, dx$   
=  $2\pi \left[ \frac{1}{4} x^4 + \frac{1}{2} x^2 \right]_0^1$   
=  $2\pi \left[ \frac{1}{4} + \frac{1}{2} \right]$   
=  $\left[ \frac{3\pi}{2} \right]$ 

# Math 181, Exam 1, Spring 2008 Problem 4 Solution

4. Compute each of the following:

(a) 
$$\int_{1}^{4} \left(\frac{1}{x} - x^{3/2}\right) dx$$
  
(b) 
$$\frac{d}{dx} \int_{1}^{x^{2}} \tan\left(\sqrt{t}\right) dt$$

# Solution:

(a) Using the Fundamental Theorem of Calculus Part I, the value of the integral is:

$$\int_{1}^{4} \left(\frac{1}{x} - x^{3/2}\right) dx = \left[\ln|x| - \frac{2}{5}x^{5/2}\right]_{1}^{4}$$
$$= \left[\ln|4| - \frac{2}{5}(4)^{5/2}\right] - \left[\ln|1| - \frac{2}{5}(1)^{5/2}\right]$$
$$= \ln 4 - \frac{64}{5} - 0 + \frac{2}{5}$$
$$= \left[\ln 4 - \frac{62}{5}\right]$$

(b) Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative is:

$$F'(x) = \frac{d}{dx} \int_{1}^{x^{2}} \tan\left(\sqrt{t}\right) dt$$
$$= \tan\left(\sqrt{x^{2}}\right) \cdot \frac{d}{dx}(x^{2})$$
$$= \boxed{\tan\left(|x|\right) \cdot (2x)}$$

#### Math 181, Exam 1, Spring 2008 Problem 5 Solution

5. Suppose you have money invested in a bank account with an interest rate of k. Let  $y_0$  denote the initial amount invested and y(t) denote the amount in the account after t years. The interest is compounded continuously so that:

$$y(t) = y_0 e^{kt}$$

- (a) At what interest rate should \$1000 be invested so that there is \$1500 in the account after 10 years?
- (b) If the interest rate is 5%, how many years will it take for your initial investment to double?

Use the approximations  $\ln 2 \approx 0.7$  and  $\ln 3 \approx 1.1$  to write your answer to (a) as an integer percent (for example, 8%) and your answer to (b) as an integer.

#### Solution:

(a) The initial amount invested is  $y_0 = 1000$ . After 10 years we have y(10) = 1500. Using the above formula and solving for k we have:

$$y(10) = y_0 e^{k(10)}$$
  

$$1500 = 1000 e^{10k}$$
  

$$\frac{1500}{1000} = e^{10k}$$
  

$$e^{10k} = \frac{3}{2}$$
  

$$10k = \ln \frac{3}{2}$$
  

$$k = \frac{1}{10} \ln \frac{3}{2}$$

In order to use the approximations to turn our answer into a percentage, we must use the logarithm rule:

$$\ln\frac{b}{a} = \ln b - \ln a$$

Therefore,

$$k = \frac{1}{10} \ln \frac{3}{2}$$
$$= \frac{1}{10} (\ln 3 - \ln 2)$$
$$\approx \frac{1}{10} (1.1 - 0.7)$$
$$\approx 0.04$$
$$\approx \boxed{4\%}$$

(b) Using k = 0.05, we must find the value of t so that  $y(t) = 2y_0$ .

$$y(t) = y_0 e^{0.05t}$$
$$2y_0 = y_0 e^{0.05t}$$
$$2 = e^{0.05t}$$
$$0.05t = \ln 2$$
$$t = 20 \ln 2$$
$$\approx 20(0.7)$$
$$\approx 14 \text{ years}$$