Math 181, Exam 1, Spring 2010
 Problem 1 Solution

1. Evaluate the integral $\int \cos ^{3} x d x$.

Solution: The integral can be solved by rewriting it using the Pythagorean Identity $\cos ^{2} x+$ $\sin ^{2} x=1$.

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int \cos ^{2} x \cos x d x \\
& =\int\left(1-\sin ^{2} x\right) \cos x d x
\end{aligned}
$$

Now let $u=\sin x$. Then $d u=\cos x d x$ and we get:

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int\left(1-\sin ^{2} x\right) \cos x d x \\
& =\int\left(1-u^{2}\right) d u \\
& =u-\frac{1}{3} u^{3}+C \\
& =\sin x-\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2010
 Problem 2 Solution

2. Evaluate the integral $\int x e^{3 x} d x$.

Solution: We will evaluate the integral using Integration by Parts. Let $u=x$ and $v^{\prime}=e^{3 x}$. Then $u^{\prime}=1$ and $v=\frac{1}{3} e^{3 x}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int x e^{3 x} d x & =\frac{1}{3} x e^{3 x}-\int 1 \cdot \frac{1}{3} e^{3 x} d x \\
& =\frac{1}{3} x e^{3 x}-\frac{1}{3} \int e^{3 x} d x \\
& =\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2010 Problem 3 Solution

3. Evaluate the definite integral $\int_{0}^{2} \frac{x^{2}}{\sqrt{1+x^{3}}} d x$.

Solution: We evaluate the integral using the u-substitution method. Let $u=1+x^{3}$. Then $d u=3 x^{2} d x \Rightarrow \frac{1}{3} d u=x^{2} d x$. The limits of integration becomes $u=1+0^{3}=1$ and $u=1+2^{3}=9$. We get:

$$
\begin{aligned}
\int_{0}^{2} \frac{x^{2}}{\sqrt{1+x^{3}}} d x & =\int_{0}^{2} \frac{1}{\sqrt{1+x^{3}}} \cdot x^{2} d x \\
& =\int_{1}^{9} \frac{1}{\sqrt{u}} \cdot \frac{1}{3} d u \\
& =\frac{1}{3} \int_{1}^{9} u^{-1 / 2} d u \\
& =\frac{1}{3}\left[2 u^{1 / 2}\right]_{1}^{9} \\
& =\frac{1}{3}\left[2(9)^{1 / 2}\right]-\frac{1}{3}\left[2(1)^{1 / 2}\right] \\
& =\frac{4}{3}
\end{aligned}
$$

Math 181, Exam 1, Spring 2010
 Problem 4 Solution

4. The region R is bounded above by the parabola $y=4-x^{2}$ and bounded below by the line $y=2-x$.
(a) Set up a definite integral giving the area of the region R.
(b) Evaluate your integral to find this area.

Solution:

(a)

The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{a}^{b}(\text { top }- \text { bottom }) d x
$$

where the limits of integration are the x-coordinates of the points of intersection of the two curves. These are found by setting the y 's equal to each other and solving for x.

$$
\begin{aligned}
y & =y \\
2-x & =4-x^{2} \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0 \\
x=-1, x & =2
\end{aligned}
$$

From the graph we see that the top curve is $y=4-x^{2}$ and the bottom curve is $y=2-x$. Therefore, the area is:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}(\text { top }- \text { bottom }) d x \\
& =\int_{-1}^{2}\left[\left(4-x^{2}\right)-(2-x)\right] d x \\
& =\int_{-1}^{2}\left(2+x-x^{2}\right) d x
\end{aligned}
$$

(b) The value of the area is:

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{2}\left(2+x-x^{2}\right) d x \\
& =\left[2 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{-1}^{2} \\
& =\left[2(2)+\frac{1}{2}(2)^{2}-\frac{1}{3}(2)^{3}\right]-\left[2(-1)+\frac{1}{2}(-1)^{2}-\frac{1}{3}(-1)^{3}\right] \\
& =\left[4+2-\frac{8}{3}\right]-\left[-2+\frac{1}{2}+\frac{1}{3}\right] \\
& =\frac{9}{2}
\end{aligned}
$$

Math 181, Exam 1, Spring 2010
 Problem 5 Solution

5. Find the volume of the solid that is obtained by rotating about the x-axis the region enclosed by the graphs of the functions

$$
y=0, \quad y=x^{2}, \quad \text { and } y=3-2 x
$$

Solution: The region being rotated about the x-axis is shown below.

We find the volume using the Shell method. The formula we will use is:

$$
V=2 \pi \int_{c}^{d} y(\text { right }-\mathrm{left}) d y
$$

where the right curve is $y=3-2 x \Rightarrow x=\frac{1}{2}(3-y)$ and the left curve is $y=x^{2} \Rightarrow x=\sqrt{y}$. The lower limit is $c=0$. The upper limit is the y-coordinate of the point of intersection in the first quadrant. To find the upper limit, we set the x 's equal to each other and solve for y.

$$
\begin{aligned}
x & =x \\
\sqrt{y} & =\frac{1}{2}(3-y) \\
y & =\frac{1}{4}(3-y)^{2} \\
y & =\frac{1}{4}\left(9-6 y+y^{2}\right) \\
4 y & =9-6 y+y^{2} \\
y^{2}-10 y+9 & =0 \\
(y-9)(y-1) & =0 \\
y=9, y & =1
\end{aligned}
$$

When $y=9$ we know that $x=\frac{1}{2}(3-9)=-3$. When $y=1$ we know that $x=\frac{1}{2}(3-1)=1$. Therefore, the upper limit of integration is $d=1$ since $(1,1)$ is in the first quadrant.
The volume is then:

$$
\begin{aligned}
V & =2 \pi \int_{c}^{d} y(\text { right }- \text { left }) d y \\
& =2 \pi \int_{0}^{1} y\left[\frac{1}{2}(3-y)-\sqrt{y}\right] d y \\
& =2 \pi \int_{0}^{1}\left(\frac{3}{2} y-\frac{1}{2} y^{2}-y^{3 / 2}\right) d y \\
& =2 \pi\left[\frac{3}{4} y^{2}-\frac{1}{6} y^{3}-\frac{2}{5} y^{5 / 2}\right]_{0}^{1} \\
& =2 \pi\left[\frac{3}{4}(1)^{2}-\frac{1}{6}(1)^{3}-\frac{2}{5}(1)^{5 / 2}\right] \\
& =2 \pi\left[\frac{3}{4}-\frac{1}{6}-\frac{2}{5}\right] \\
& =\frac{11 \pi}{30}
\end{aligned}
$$

Math 181, Exam 1, Spring 2010
 Problem 6 Solution

6. Compute the average value of the function $f(x)=\sin (\pi x)$ over the interval $[0,1 / 2]$.

Solution: The average value is:

$$
\begin{aligned}
\bar{f} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& =\frac{1}{\frac{1}{2}-0} \int_{0}^{1 / 2} \sin (\pi x) d x \\
& =2\left[-\frac{1}{\pi} \cos (\pi x)\right]_{0}^{1 / 2} \\
& =2\left[-\frac{1}{\pi} \cos \left(\pi \cdot \frac{1}{2}\right)\right]-2\left[-\frac{1}{\pi} \cos (\pi \cdot 0)\right] \\
& =2\left[-\frac{1}{\pi} \cdot 0\right]-2\left[-\frac{1}{\pi} \cdot 1\right] \\
& =\frac{2}{\pi}
\end{aligned}
$$

