Math 181, Exam 1, Spring 2012
 Problem 1 Solution

1. An object moves along a straight line with velocity function $v(t)=t^{2}+2 t+5$.
(a) Calculate the displacement from $t=0$ to $t=3$.
(b) Is the displacement calculated in part (a) equal to the total distance traveled by the object? Explain why or why not.

Solution:

(a) By definition, the displacement of an object moving with velocity $v(t)$ from time t_{0} to t_{1} is given by

$$
\text { displacement }=\int_{t_{0}}^{t_{1}} v(t) d t
$$

Using the given velocity function and the given time interval we get

$$
\begin{aligned}
\text { displacement } & =\int_{0}^{3}\left(t^{2}+2 t+5\right) d t \\
& =\left[\frac{t^{3}}{3}+t^{2}+5 t\right]_{0}^{3} \\
& =\frac{3^{3}}{3}+3^{2}+5(3) \\
& =33
\end{aligned}
$$

(b) By definition, the distance traveled by an object moving with velocity $v(t)$ from time t_{0} to t_{1} is given by

$$
\text { distance traveled }=\int_{t_{0}}^{t_{1}}|v(t)| d t
$$

We should notice that the given velocity function can be written as

$$
v(t)=t^{2}+2 t+5=(t+1)^{2}+4
$$

by completing the square and that this function is positive for all t. Therefore, $|v(t)|=$ $v(t)$ and the distance traveled is the same as displacement.

Math 181, Exam 1, Spring 2012
 Problem 2 Solution

2. Set up (but do not evaluate) the integrals that compute the following quantities:
(a) The length of the curve $y=3 x^{2}+1$ between $x=0$ and $x=2$.
(b) The volume of the solid obtained by revolving around the y-axis the region bounded by $y=\sin (x)$, the x-axis, $x=\frac{\pi}{4}$, and $x=\frac{3 \pi}{4}$.

Solution:

(a) The formula for calculating the length of a curve $y=f(x)$ on the interval $[a, b]$ is given by

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Since $y=f(x)=3 x^{2}+1$ we have $f^{\prime}(x)=6 x$. Therefore, the length of the curve can be computed using the formula

$$
L=\int_{0}^{2} \sqrt{1+(6 x)^{2}} d x=\int_{0}^{2} \sqrt{1+36 x^{2}} d x
$$

(b) We compute the volume of the solid of revolution using the Shell Method. The formula we will use is

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

where $a=\frac{\pi}{4}, b=\frac{3 \pi}{4}$, and $f(x)=\sin (x)$. Plugging these quantities into the formula we get

$$
V=2 \pi \int_{\pi / 4}^{3 \pi / 4} x \sin (x) d x
$$

Math 181, Exam 1, Spring 2012
 Problem 3 Solution

3. Let R be the region below the curve $y=\sqrt{4-x}$ and between $x=1$ and $x=4$.
(a) Calculate the area of R.
(b) Calculate the volume of the solid obtained by revolving R around the x-axis.

Solution:

(a) The area of R is

$$
\begin{aligned}
A & =\int_{1}^{4} \sqrt{4-x} d x \\
& =\left[-\frac{2}{3}(4-x)^{3 / 2}\right]_{1}^{4} \\
& =\left[-\frac{2}{3}(4-4)^{3 / 2}\right]-\left[-\frac{2}{3}(4-1)^{3 / 2}\right], \\
& =2 \sqrt{3}
\end{aligned}
$$

(b) We calculate the volume using the Disk Method. The formula we will use is

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

where $a=1, b=4$, and $f(x)=\sqrt{4-x}$. Plugging these quantities into the formula we get

$$
\begin{aligned}
V & =\pi \int_{1}^{4}(\sqrt{4-x})^{2} d x \\
& =\pi \int_{1}^{4}(4-x) d x \\
& =\pi\left[4 x-\frac{1}{2} x^{2}\right]_{1}^{4} \\
& =\pi\left[\left(4(4)-\frac{1}{2}(4)^{2}\right)-\left(4(1)-\frac{1}{2}(1)^{2}\right)\right] \\
& =\frac{9 \pi}{2}
\end{aligned}
$$

Math 181, Exam 1, Spring 2012
 Problem 4 Solution

4. Calculate the indefinite integrals:
(a) $\int(4 x+1) \ln (x) d x$
(b) $\int \tan ^{3}(x) \sec ^{4}(x) d x$
(c) $\int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x$

Solution:

(a) We use Integration by Parts to calculate the integral. Letting $u=\ln (x)$ and $d v=$ $(4 x+1) d x$ we get $d u=\frac{1}{x} d x$ and $v=2 x^{2}+x$. Using the Integration by Parts formula we get

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int(4 x+1) \ln (x) d x & =\left(2 x^{2}+x\right) \ln (x)-\int\left(2 x^{2}+x\right) \frac{1}{x} d x \\
\int(4 x+1) \ln (x) d x & =\left(2 x^{2}+x\right) \ln (x)-\int(2 x+1) d x \\
\int(4 x+1) \ln (x) d x & =\left(2 x^{2}+x\right) \ln (x)-\left(x^{2}+x\right)+C
\end{aligned}
$$

(b) We begin by rewriting $\sec ^{4}(x)$ as

$$
\sec ^{4}(x)=\sec ^{2}(x) \sec ^{2}(x)=\left(1+\tan ^{2}(x)\right) \sec ^{2}(x)
$$

The integral then becomes

$$
\int \tan ^{3}(x) \sec ^{4}(x) d x=\int \tan ^{3}(x)\left(1+\tan ^{2}(x)\right) \sec ^{2}(x) d x
$$

Now let $u=\tan (x)$ so that $d u=\sec ^{2}(x) d x$. Making the proper substitutions into the above integral we find that

$$
\begin{aligned}
& \int \tan ^{3}(x) \sec ^{4}(x) d x=\int \tan ^{3}(x)\left(1+\tan ^{2}(x)\right) \sec ^{2}(x) d x \\
& \int \tan ^{3}(x) \sec ^{4}(x) d x=\int u^{3}\left(1+u^{2}\right) d u \\
& \int \tan ^{3}(x) \sec ^{4}(x) d x=\int\left(u^{3}+u^{5}\right) d u \\
& \int \tan ^{3}(x) \sec ^{4}(x) d x=\frac{1}{4} u^{4}+\frac{1}{6} u^{6}+C \\
& \int \tan ^{3}(x) \sec ^{4}(x) d x=\frac{1}{4} \tan ^{4}(x)+\frac{1}{6} \tan ^{6}(x)+C .
\end{aligned}
$$

(c) We use the trigonometric substitution $x=\sqrt{\frac{2}{3}} \tan (\theta), d x=\sqrt{\frac{2}{3}} \sec ^{2}(\theta) d \theta$. Making the proper substitutions into the given integral we find that

$$
\begin{aligned}
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\int \frac{1}{\left(2+3 \cdot \frac{2}{3} \tan ^{2}(\theta)\right)^{3 / 2}} \sqrt{\frac{2}{3}} \sec ^{2}(\theta) d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\sqrt{\frac{2}{3}} \int \frac{\sec ^{2}(\theta)}{\left(2+2 \tan ^{2}(\theta)\right)^{3 / 2}} d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\sqrt{\frac{2}{3}} \int \frac{\sec ^{2}(\theta)}{\left(2\left(1+\tan ^{2}(\theta)\right)\right)^{3 / 2}} d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\sqrt{\frac{2}{3}} \int \frac{\sec ^{2}(\theta)}{2^{3 / 2}\left(1+\tan ^{2}(\theta)\right)^{3 / 2}} d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\sqrt{\frac{2}{3}} \cdot \frac{1}{2^{3 / 2}} \int \frac{\sec ^{2}(\theta)}{\left(\sec ^{2}(\theta)\right)^{3 / 2}} d \theta, \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\sqrt{\frac{2}{3}} \cdot \frac{1}{2 \sqrt{2}} \int \frac{\sec ^{2}(\theta)}{\sec ^{3}(\theta)} d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{1}{2 \sqrt{2}} \int \cos (\theta) d \theta \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\frac{1}{2 \sqrt{3}} \sin (\theta)+C .
\end{aligned}
$$

We use the fact that $x=\sqrt{\frac{2}{3}} \tan (\theta)$ and the identity $\sec ^{2}(\theta)=1+\tan ^{2}(\theta)$ to find that

$$
\begin{aligned}
\sec ^{2}(\theta) & =1+\tan ^{2}(\theta), \\
\sec ^{2}(\theta) & =1+\left(\frac{x}{\sqrt{\frac{2}{3}}}\right)^{2}, \\
\sec ^{2}(\theta) & =1+\frac{x^{2}}{\frac{2}{3}}, \\
\sec ^{2}(\theta) & =1+\frac{3 x^{2}}{2}, \\
\sec (\theta) & =\sqrt{1+\frac{3 x^{2}}{2}}, \\
\sec (\theta) & =\sqrt{\frac{2+3 x^{2}}{2}} \\
\cos (\theta) & =\sqrt{\frac{2}{2+3 x^{2}}}
\end{aligned}
$$

Finally, we use the identity $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ to get

$$
\begin{aligned}
\sin ^{2}(\theta) & =1-\cos ^{2}(\theta) \\
\sin ^{2}(\theta) & =1-\left(\sqrt{\frac{2}{2+3 x^{2}}}\right)^{2} \\
\sin ^{2}(\theta) & =1-\frac{2}{2+3 x^{2}} \\
\sin ^{2}(\theta) & =\frac{3 x^{2}}{2+3 x^{2}} \\
\sin (\theta) & =\sqrt{\frac{3 x^{2}}{2+3 x^{2}}} \\
\sin (\theta) & =\frac{\sqrt{3 x}}{\sqrt{2+3 x^{2}}}
\end{aligned}
$$

The integral is then

$$
\begin{aligned}
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\frac{1}{2 \sqrt{3}} \sin (\theta)+C \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\frac{1}{2 \sqrt{3}} \cdot \frac{\sqrt{3} x}{\sqrt{2+3 x^{2}}}+C, \\
& \int \frac{1}{\left(2+3 x^{2}\right)^{3 / 2}} d x=\frac{x}{2 \sqrt{2+3 x^{2}}}+C .
\end{aligned}
$$

Math 181, Exam 1, Spring 2012
 Problem 5 Solution

5. Calculate the definite integral: $\int_{0}^{2} \frac{1}{(x+3)(x+5)} d x$.

Solution: The partial fraction decomposition of the integrand is

$$
\frac{1}{(x+3)(x+5)}=\frac{A}{x+3}+\frac{B}{x+5}
$$

After multiplying both sides of the equation by the denominator on the left hand side of the above equation we get

$$
1=A(x+5)+B(x+3)
$$

Letting $x=-5$ we find that $B=-\frac{1}{2}$. Letting $x=-3$ we find that $A=\frac{1}{2}$. Therefore, the final decomposition is

$$
\frac{1}{(x+3)(x+5)}=\frac{\frac{1}{2}}{x+3}-\frac{\frac{1}{2}}{x+5}
$$

The value of the given integral is then

$$
\begin{aligned}
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\int_{0}^{2}\left(\frac{\frac{1}{2}}{x+3}-\frac{\frac{1}{2}}{x+5}\right) d x \\
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\left[\frac{1}{2} \ln (x+3)-\frac{1}{2} \ln (x+5)\right]_{0}^{2} \\
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\left[\frac{1}{2} \ln (2+3)-\frac{1}{2} \ln (2+5)\right]-\left[\frac{1}{2} \ln (0+3)-\frac{1}{2} \ln (0+5)\right] \\
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\frac{1}{2} \ln (5)-\frac{1}{2} \ln (7)-\frac{1}{2} \ln (3)+\frac{1}{2} \ln (5), \\
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\ln (5)-\frac{1}{2} \ln (7)-\frac{1}{2} \ln (3) \\
& \int_{0}^{2} \frac{1}{(x+3)(x+5)} d x=\ln \left(\frac{5}{\sqrt{21}}\right)
\end{aligned}
$$

