Math 181, Exam 1, Spring 2013
 Problem 1 Solution

1. Compute the integrals $\int x e^{4 x} d x$ and $\int \arctan x d x$.

Solution: We compute the first integral using Integration by Parts. The following table summarizes the elements that make up the technique.

$u=x$	$d v=e^{4 x} d x$
$d u=d x$	$v=\frac{1}{4} e^{4 x}$

Using the Integration by Parts formula we have

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int x e^{4 x} d x & =\frac{1}{4} x e^{4 x}-\frac{1}{4} \int e^{4 x} d x \\
\text { ANSWER } \quad \int x e^{4 x} d x & =\frac{1}{4} x e^{4 x}-\frac{1}{16} e^{4 x}+C
\end{aligned}
$$

The second integral is computed by Integration by Parts as well. The following table summaries the elements that make up the technique.

$u=\arctan (x)$	$d v=d x$
$d u=\frac{1}{x^{2}+1} d x$	$v=x$

Using the Integration by Parts formula we have

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \arctan (x) d x & =x \arctan (x)-\int \frac{x}{x^{2}+1} d x \\
\text { AnSWER } \quad \int \arctan (x) d x & =x \arctan (x)-\frac{1}{2} \ln \left(x^{2}+1\right)+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2013
 Problem 2 Solution

2. Compute the integral $\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}$.

Solution: We compute the integral using the trigonometric substitution $x=2 \tan \theta, d x=$ $2 \sec ^{2} \theta d \theta$. After substituting these expressions into the integral and simplifying we obtain:

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{x^{2}+4}} & =\int \frac{2 \sec ^{2} \theta d \theta}{(2 \tan \theta)^{2} \sqrt{(2 \tan \theta)^{2}+4}} \\
& =\int \frac{2 \sec ^{2} \theta}{4 \tan ^{2} \theta \sqrt{4 \tan ^{2} \theta+4}} d \theta \\
& =\int \frac{2 \sec ^{2} \theta}{4 \tan ^{2} \theta \sqrt{4\left(\tan ^{2} \theta+1\right)}} d \theta \\
& =\int \frac{2 \sec ^{2} \theta}{4 \tan ^{2} \theta \sqrt{4 \sec ^{2} \theta}} d \theta \\
& =\int \frac{2 \sec ^{2} \theta}{4 \tan ^{2} \theta \cdot 2 \sec \theta} d \theta \\
& =\frac{1}{4} \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta
\end{aligned}
$$

To evaluate the resulting trigonometric integral we rewrite the integrand in terms of $\sin \theta$ and $\cos \theta$ by using the definitions

$$
\sec \theta=\frac{1}{\cos \theta}, \quad \tan \theta=\frac{\sin \theta}{\cos \theta}
$$

The integral then transforms into

$$
\int \frac{\sec \theta}{\tan ^{2} \theta} d \theta=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
$$

We can either
(1) rewrite the integrand as $\cot \theta \csc \theta$ and use the fact that this is the derivative of $-\csc \theta$ or
(2) use the substitution $u=\sin \theta, d u=\cos \theta d \theta$.

In either case we obtain the result:

$$
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=-\csc \theta+C
$$

Therefore, our integral takes the form

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}=-\frac{1}{4} \csc \theta+C
$$

We must finish the problem by writing $\csc \theta$ in terms of x. Since we know that $x=2 \tan \theta$ we have

$$
\tan \theta=\frac{x}{2}=\frac{\mathrm{OPP}}{\mathrm{ADJ}}
$$

where OPP and ADJ are the opposite and adjacent sides of a right triangle, respectively, where opposite refers to the length of the side across from θ. Using the Pythagorean Theorem, the hypotenuse of this triangle is $\sqrt{x^{2}+4}$. Therefore,

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{\mathrm{HYP}}{\mathrm{OPP}}=\frac{\sqrt{x^{2}+4}}{x}
$$

After substituting this expression into our result we find that

$$
\text { ANSWER } \int \frac{d x}{x^{2} \sqrt{x^{2}+4}}=-\frac{\sqrt{x^{2}+4}}{4 x}+C
$$

Math 181, Exam 1, Spring 2013
 Problem 3 Solution

3. The region between the x-axis and the parabola $y=1-x^{2}$ is rotated about the line $x=2$. Find the volume of the resulting solid.

Solution: The region being rotated is plotted below.

In this case, we use the Shell Method because the integration with respect to x is easier to perform. The volume formula is

$$
V=2 \pi \int_{a}^{b}(\text { radius })(\text { height }) d x
$$

The height of each shell is given by $1-x^{2}$. Since the region is being rotated about the axis $x=2$, the radius of each shell is given by $2-x$. The interval over which the integral will take place is $x=-1$ to $x=1$ since these are the points where the parabola $y=1-x^{2}$ intersects the x-axis. Therefore, the volume of the solid is

$$
\begin{aligned}
& V=2 \pi \int_{-1}^{1}(2-x)\left(1-x^{2}\right) d x \\
& V=2 \pi \int_{-1}^{1}\left(2-x-2 x^{2}+x^{3}\right) d x \\
& V=8 \pi \int_{0}^{1}\left(1-x^{2}\right) d x \\
& V=8 \pi\left[x-\frac{x^{3}}{3}\right]_{0}^{1}
\end{aligned}
$$

$$
\text { Answer } \quad V=\frac{16 \pi}{3}
$$

Math 181, Exam 1, Spring 2013
 Problem 4 Solution

4. Compute the integrals $\int \frac{d x}{x^{2}-x}$ and $\int \frac{x+3}{x^{2}+2 x+5} d x$.

Solution: The integrand of $\int \frac{d x}{x^{2}-x}$ is a rational function whose denominator factors into $x(x-1)$. Thus, we will use the method of partial fractions. The partial fraction decomposition of the integrand is

$$
\frac{1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1}
$$

After clearing denominators we find that

$$
1=A(x-1)+B x
$$

When $x=0$ we have $A=-1$ and when $x=1$ we have $B=1$. Therefore, we may evaluate the integral as follows:

$$
\begin{aligned}
\int \frac{d x}{x^{2}-x} & =\int\left(-\frac{1}{x}+\frac{1}{x-1}\right) d x \\
\text { ANSWER } \int \frac{d x}{x^{2}-x} & =-\ln |x|+\ln |x-1|+C
\end{aligned}
$$

The integrand of the integral $\int \frac{x+3}{x^{2}+2 x+5} d x$ is a rational function but the denominator is an irreducible quadratic. Therefore we begin by completing the square:

$$
x^{2}+2 x+5=\left(x^{2}+2 x+1\right)+5-1=(x+1)^{2}+4
$$

At the same time we can rewrite the numerator as $x+3=(x+1)+2$. The integral can then be split into the sum of two integrals

$$
\int \frac{x+3}{x^{2}+2 x+5} d x=\int \frac{x+1}{(x+1)^{2}+4} d x+\int \frac{2}{(x+1)^{2}+4} d x
$$

Letting $u=x+1, d u=d x$ we obtain:

$$
\int \frac{x+3}{x^{2}+2 x+5} d x=\int \frac{u}{u^{2}+4} d u+\int \frac{2}{u^{2}+4} d u
$$

The first integral on the right hand side may be evaluated using the substitution $v=u^{2}+4$, $\frac{1}{2} d v=u d u$ and the second integral may be evaluated using the trigonometric substitution
$u=2 \tan \theta, d u=2 \sec ^{2} \theta d \theta$. The sum of these integrals transforms and evaluates as follows:

$$
\begin{aligned}
\int \frac{x+3}{x^{2}+2 x+5} d x & =\int \frac{u}{u^{2}+4}+\int \frac{2}{u^{2}+4} d u \\
& =\frac{1}{2} \int \frac{d v}{v}+\int d \theta \\
& =\frac{1}{2} \ln |v|+\theta+C \\
& =\frac{1}{2} \ln \left(u^{2}+4\right)+\arctan \left(\frac{u}{2}\right)+C
\end{aligned}
$$

where we used the fact that $v=u^{2}+4$ and $\theta=\arctan \left(\frac{u}{2}\right)$ to write our answer in terms of u. We must take it a step further and write our answer in terms of x. We use the fact that $u=x+1$ to obtain:

$$
\begin{aligned}
\int \frac{x+3}{x^{2}+2 x+5} d x & =\frac{1}{2} \ln \left((x+1)^{2}+4\right)+\arctan \left(\frac{x+1}{2}\right)+C \\
\text { ANSWER } \int \frac{x+3}{x^{2}+2 x+5} d x & =\frac{1}{2} \ln \left(x^{2}+2 x+5\right)+\arctan \left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

Math 181, Exam 1, Spring 2013
 Problem 5 Solution

5. Find the arc length of the graph of $f(x)=\ln x-\frac{x^{2}}{8}$ from 1 to e.

Solution: The arc length formula we will use is

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

The derivative $f^{\prime}(x)$ is

$$
f^{\prime}(x)=\frac{1}{x}-\frac{x}{4}
$$

Upon adding 1 to the square of $f^{\prime}(x)$ we find that the result is a perfect square. The details are outlined below:

$$
\begin{aligned}
& 1+f^{\prime}(x)^{2}=1+\left(\frac{1}{x}-\frac{x}{4}\right)^{2} \\
& 1+f^{\prime}(x)^{2}=1+\frac{1}{x^{2}}-\frac{1}{2}+\frac{x^{2}}{16} \\
& 1+f^{\prime}(x)^{2}=\frac{1}{x^{2}}+\frac{1}{2}+\frac{x^{2}}{16} \\
& 1+f^{\prime}(x)^{2}=\left(\frac{1}{x}+\frac{x}{4}\right)^{2}
\end{aligned}
$$

Therefore, the arc length is

$$
\begin{aligned}
L & =\int_{1}^{e} \sqrt{1+f^{\prime}(x)^{2}} d x \\
L & =\int_{1}^{e}\left(\frac{1}{x}+\frac{x}{4}\right) d x \\
L & =\left[\ln (x)+\frac{x^{2}}{8}\right]_{1}^{e} \\
L & =\left[\ln (e)+\frac{e^{2}}{8}\right]-\left[\ln (1)+\frac{1^{2}}{8}\right] \\
\text { ANSWER } \quad L & =1+\frac{1}{8}\left(e^{2}-1\right)
\end{aligned}
$$

