## Math 181, Exam 1, Study Guide Problem 1 Solution

1. Evaluate $\int x e^{x^{2}} d x$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=x^{2}$. Then $d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x$ and we get:

$$
\begin{aligned}
\int x e^{x^{2}} d x & =\int e^{x^{2}} \cdot x d x \\
& =\int e^{u} \cdot \frac{1}{2} d u \\
& =\frac{1}{2} \int e^{u} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 2 Solution

2. Evaluate $\int \frac{1}{16 x^{2}+1} d x$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=4 x$. Then $d u=4 d x \quad \Rightarrow \quad \frac{1}{4} d u=d x$ and we get:

$$
\begin{aligned}
\int \frac{1}{16 x^{2}+1} d x & =\int \frac{1}{(4 x)^{2}+1} d x \\
& =\int \frac{1}{u^{2}+1} \cdot \frac{1}{4} d u \\
& =\frac{1}{4} \int \frac{1}{u^{2}+1} d u \\
& =\frac{1}{4} \arctan u+C \\
& =\frac{1}{4} \arctan (4 x)+C
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 3 Solution

3. Evaluate $\int \frac{t^{3}}{\sqrt{t^{4}+9}} d t$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=t^{4}+9$. Then $d u=4 t^{3} d t \Rightarrow \frac{1}{4} d u=t^{3} d t$ and we get:

$$
\begin{aligned}
\int \frac{t^{3}}{\sqrt{t^{4}+9}} d t & =\int \frac{1}{\sqrt{t^{4}+9}} \cdot t^{3} d t \\
& =\int \frac{1}{\sqrt{u}} \cdot \frac{1}{4} d u \\
& =\frac{1}{4} \int \frac{1}{\sqrt{u}} d u \\
& =\frac{1}{4}[2 \sqrt{u}]+C \\
& =\frac{1}{2} \sqrt{u}+C \\
& =\frac{1}{2} \sqrt{t^{4}+9}+C
\end{aligned}
$$

## Math 181, Exam 1, Study Guide Problem 4 Solution

4. Evaluate $\int \tan ^{2} \theta \sec ^{2} \theta d \theta$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=\tan \theta$. Then $d u=\sec ^{2} \theta d \theta$ and we get:

$$
\begin{aligned}
\int \tan ^{2} \theta \sec ^{2} \theta d \theta & =\int u^{2} d u \\
& =\frac{1}{3} u^{3}+C \\
& =\frac{1}{3} \tan ^{3} \theta+C
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 5 Solution

5. Evaluate $\int_{0}^{1} x \sqrt{1-x^{2}} d x$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=1-x^{2}$. Then $d u=-2 x d x \quad \Rightarrow \quad-\frac{1}{2} d u=x d x$. The limits of integration becomes $u=1-0^{2}=1$ and $u=1-1^{2}=0$. We get:

$$
\begin{aligned}
\int_{0}^{1} x \sqrt{1-x^{2}} d x & =\int_{0}^{1} \sqrt{1-x^{2}}(x d x) \\
& =\int_{1}^{0} \sqrt{u}\left(-\frac{1}{2} d u\right) \\
& =-\frac{1}{2} \int_{1}^{0} u^{1 / 2} d u \\
& =\frac{1}{2} \int_{0}^{1} u^{1 / 2} d u \\
& =\frac{1}{2}\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{1} \\
& =\frac{1}{2}\left[\frac{2}{3}(1)^{3 / 2}\right]-\frac{1}{2}\left[\frac{2}{3}(0)^{3 / 2}\right] \\
& =\frac{1}{3}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 6 Solution

6. Evaluate $\int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{4+3 \sin x}} d x$.

Solution: We evaluate the integral using the $u$-substitution method. Let $u=4+3 \sin x$. Then $d u=3 \cos x d x \Rightarrow \frac{1}{3} d u=\cos x d x$. The limits of integration become $u=4+$ $3 \sin (-\pi)=4$ and $u=4+3 \sin \pi=4$. We get:

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{4+3 \sin x}} d x & =\int_{-\pi}^{\pi} \frac{1}{\sqrt{4+3 \sin x}} \cdot \cos x d x \\
& =\int_{4}^{4} \frac{1}{\sqrt{u}} \cdot \frac{1}{3} d u \\
& =0
\end{aligned}
$$

because the limits of integration are identical.

## Math 181, Exam 1, Study Guide <br> Problem 7 Solution

7. Evaluate $\int_{0}^{1} \frac{4}{\sqrt{1-x^{2}}} d x$.

Solution: The integrand is undefined at $x=1$. Therefore, this is an improper integral. We evaluate the integral by turning it into a limit calculation.

$$
\begin{aligned}
\int_{0}^{1} \frac{4}{\sqrt{1-x^{2}}} d x & =\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{4}{\sqrt{1-x^{2}}} d x \\
& =\lim _{b \rightarrow 1^{-}}[4 \arcsin x]_{0}^{b} \\
& =\lim _{b \rightarrow 1^{-}}[4 \arcsin b-4 \arcsin 0] \\
& =4 \arcsin 1-4 \arcsin 0 \\
& =4\left(\frac{\pi}{2}\right)-4(0) \\
& =2 \pi
\end{aligned}
$$

We evaluated the limit $\lim _{b \rightarrow 1^{-}} 4 \arcsin b$ by substituting $b=1$ using the fact that $f(b)=$ $4 \arcsin b$ is left-continuous at $b=1$.

## Math 181, Exam 1, Study Guide <br> Problem 8 Solution

8. Find $\frac{d y}{d x}$ for each of the following:
(a) $y=\int_{0}^{x} \sqrt{1+t^{2}} d t$
(b) $y=\int_{0}^{\sqrt{x}} \sin \left(t^{2}\right) d t$
(c) $y=\int_{0}^{\tan x} \frac{1}{1+t^{2}} d t$ (hint: when you simplify, you will get a constant)

Solution: In all parts, we use the Fundamental Theorem of Calculus Part II:

$$
\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) g^{\prime}(x)
$$

(a) The derivative is:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \int_{0}^{x} \sqrt{1+t^{2}} d t \\
& =\sqrt{1+(x)^{2}} \cdot(x)^{\prime} \\
& =\sqrt{1+x^{2}}
\end{aligned}
$$

(b) The derivative is:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \int_{0}^{\sqrt{x}} \sin \left(t^{2}\right) d t \\
& =\sin \left((\sqrt{x})^{2}\right) \cdot(\sqrt{x})^{\prime} \\
& =\sin x \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(c) The derivative is:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \int_{0}^{\tan x} \frac{1}{1+t^{2}} d t \\
& =\frac{1}{1+(\tan x)^{2}} \cdot(\tan x)^{\prime} \\
& =\frac{1}{1+\tan ^{2} x} \cdot \sec ^{2} x \\
& =\frac{1}{\sec ^{2} x} \cdot \sec ^{2} x \\
& =1
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 9 Solution

9. Find the area of the region enclosed by the curves $y=x^{2}$ and $y=-x^{2}+4 x$.

## Solution:



The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{a}^{b}(\text { top }- \text { bottom }) d x
$$

where the limits of integration are the $x$-coordinates of the points of intersection of the two curves. These are found by setting the $y$ 's equal to each other and solving for $x$.

$$
\begin{aligned}
y & =y \\
x^{2} & =-x^{2}+4 x \\
2 x^{2}-4 x & =0 \\
2 x(x-2) & =0 \\
x=0, x & =2
\end{aligned}
$$

From the graph we see that the top curve is $y=-x^{2}+4 x$ and the bottom curve is $y=x^{2}$.

Therefore, the area is:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{2}\left[\left(-x^{2}+4 x\right)-\left(x^{2}\right)\right] d x \\
& =\int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& =2(2)^{2}-\frac{2}{3}(2)^{3} \\
& =\frac{8}{3}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide Problem 10 Solution

10. Find the area of the region enclosed by the curves $x+y^{2}=0$ and $x+3 y^{2}=2$.

## Solution:



The formula we will use to compute the area of the region is:

$$
\text { Area }=\int_{c}^{d}(\text { right }- \text { left }) d x
$$

where the limits of integration are the $y$-coordinates of the points of intersection of the two curves. These are found by setting the $x$ 's equal to each other and solving for $y$.

$$
\begin{aligned}
x & =x \\
-y^{2} & =-3 y^{2}+2 \\
2 y^{2}-2 & =0 \\
2\left(y^{2}-1\right) & =0 \\
2(y+1)(y-1) & =0 \\
y=-1, y & =1
\end{aligned}
$$

From the graph we see that the right curve is $x=-3 y^{2}+2$ and the left curve is $x=-y^{2}$.

Therefore, the area is:

$$
\begin{aligned}
\text { Area } & =\int_{c}^{d}(\text { right }- \text { left }) d x \\
& =\int_{-1}^{1}\left[\left(-3 y^{2}+2\right)-\left(-y^{2}\right)\right] d y \\
& =\int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
& =\left[2 y-\frac{2}{3} y^{3}\right]_{-1}^{1} \\
& =\left[2(1)-\frac{2}{3}(1)^{3}\right]-\left[2(-1)-\frac{2}{3}(-1)^{3}\right] \\
& =\frac{8}{3}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 11 Solution

## 11. Find the volume of the following solid:

The base of the solid is the circle $x^{2}+y^{2}=1$. The cross-sections are isosceles right triangles perpendicular to the $y$-axis.

Solution: The volume formula we will use is:

$$
V=\int_{c}^{d} A(y) d y
$$

where $A(y)$ is the cross sectional area of the solid as a function of $y$. We choose to integrate with respect to $y$ in this problem because the cross sections are perpendicular to the $y$-axis.

To determine the function $A(y)$ we first note that the cross sections are isosceles right triangles. The triangle may be oriented in one of two ways: (1) with the hypotenuse lying inside the circle $x^{2}+y^{2}=1$ or (2) with one of the sides lying inside the circle.


Let's assume (1) for the moment. In this case, the length of the hypotenuse is $2 x$ where $x=\sqrt{1-y^{2}}$ after solving the equation $x^{2}+y^{2}=1$ for $x$. The other two sides of the triangle are equal since the triangle is isosceles. Letting the other sides be $a$, we use the Pythagorean Theorem to find $a$.

$$
\begin{aligned}
a^{2}+a^{2} & =(2 x)^{2} \\
2 a^{2} & =4 x^{2} \\
2 a^{2} & =4\left(1-y^{2}\right) \\
a^{2} & =2\left(1-y^{2}\right) \\
a & =\sqrt{2\left(1-y^{2}\right)}
\end{aligned}
$$

The area of the triangle is:

$$
\begin{aligned}
A(y) & =\frac{1}{2} b h \\
& =\frac{1}{2}(a)(a) \\
& =\frac{1}{2} a^{2} \\
& =\frac{1}{2}\left[2\left(1-y^{2}\right)\right] \\
& =1-y^{2}
\end{aligned}
$$

The cross sections start at $c=-1$ and end at $d=1$. Therefore, the volume is:

$$
\begin{aligned}
V & =\int_{-1}^{1}\left(1-y^{2}\right) d y \\
& =\left[y-\frac{1}{3} y^{3}\right]_{-1}^{1} \\
& =\left[1-\frac{1}{3}(1)^{3}\right]-\left[(-1)-\frac{1}{3}(-1)^{3}\right] \\
& =1-\frac{1}{3}+1-\frac{1}{3} \\
& =\frac{4}{3}
\end{aligned}
$$



Now let's assume (2), that one of the sides lies in the circle. In this case, the length of the side is $2 x$ where $x=\sqrt{1-y^{2}}$. The other side of the triangle is also $2 x$ since the triangle is
isosceles. The area of the triangle is then:

$$
\begin{aligned}
A(y) & =\frac{1}{2} b h \\
& =\frac{1}{2}(2 x)(2 x) \\
& =2 x^{2} \\
& =2\left(1-y^{2}\right)
\end{aligned}
$$

The cross sections start at $c=-1$ and end at $d=1$. Therefore, the volume is:

$$
\begin{aligned}
V & =\int_{-1}^{1} 2\left(1-y^{2}\right) d y \\
& =2\left[y-\frac{1}{3} y^{3}\right]_{-1}^{1} \\
& =2\left[1-\frac{1}{3}(1)^{3}\right]-\left[(-1)-\frac{1}{3}(-1)^{3}\right] \\
& =2\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
& =\frac{8}{3}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 12 Solution

12. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$, $y=2$, and $x=0$ about the:
(a) $x$-axis
(b) $y$-axis

## Solution:

(a) We find the volume of the solid generated by revolving around the $x$-axis using the Washer Method. The variable of integration is $x$ and the corresponding formula is:

$$
V=\pi \int_{a}^{b}\left[(\mathrm{top})^{2}-(\mathrm{bottom})^{2}\right] d x
$$

The top curve is $y=2$ and the bottom curve is $y=\sqrt{x}$. The lower limit of integration is $x=0$. The upper limit is the $x$-coordinate of the point of intersection of the curves $y=2$ and $y=\sqrt{x}$. To find this, we set the $y$ 's equal to each other and solve for $x$.

$$
\begin{aligned}
y & =y \\
\sqrt{x} & =2 \\
x & =4
\end{aligned}
$$

The volume is then:

$$
\begin{aligned}
V & =\pi \int_{0}^{4}\left[(2)^{2}-(\sqrt{x})^{2}\right] d x \\
& =\pi \int_{0}^{4}(4-x) d x \\
& =\pi\left[4 x-\frac{1}{2} x^{2}\right]_{0}^{4} \\
& =\pi\left[4(4)-\frac{1}{2}(4)^{2}\right] \\
& =8 \pi
\end{aligned}
$$


(b) We find the volume of the solid generated by revolving around the $y$-axis using the Shell Method. The variable of integration is $x$ and the corresponding formula is:

$$
V=2 \pi \int_{a}^{b} x(\text { top }- \text { bottom }) d x
$$

The top and bottom curves are the same as those in part (a). So are the limits of integration. The volume is then:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{4} x(2-\sqrt{x}) d x \\
& =2 \pi \int_{0}^{4}\left(2 x-x^{3 / 2}\right) d x \\
& =2 \pi\left[x^{2}-\frac{2}{5} x^{5 / 2}\right]_{0}^{4} \\
& =2 \pi\left[4^{2}-\frac{2}{5}(4)^{5 / 2}\right] \\
& =\frac{32 \pi}{5}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 13 Solution

13. Find the volume of the solid generated by revolving the region bounded by the $y$-axis and the curve $x=\frac{2}{y}$, for $1 \leq y \leq 4$, about the:
(a) $x$-axis, using the Method of Cylindrical Shells
(b) $y$-axis

## Solution:

(a) We find the volume of the solid obtained by rotating about the $x$-axis using the Shell Method. The variable of integration is $y$ and the corresponding formula is:

$$
V=2 \pi \int_{c}^{d} y(\text { right }- \text { left }) d y
$$

The right curve is $x=\frac{2}{y}$ and the left curve is $x=0$ (the $y$-axis). The volume is then:

$$
\begin{aligned}
V & =2 \pi \int_{1}^{4} y\left(\frac{2}{y}-0\right) d y \\
& =2 \pi \int_{1}^{4} 2 d y \\
& =2 \pi[2 y]_{1}^{4} \\
& =2 \pi[2(4)-2(1)] \\
& =12 \pi
\end{aligned}
$$


(b) We find the volume of the solid obtained by rotating about the $y$-axis using the Disk Method. The variable of integration is $y$ and the corresponding formula is:

$$
V=\pi \int_{c}^{d} f(y)^{2} d y
$$

where $f(y)=\frac{2}{y}$. The volume is then:

$$
\begin{aligned}
V & =\pi \int_{1}^{4}\left(\frac{2}{y}\right)^{2} d y \\
& =\pi \int_{1}^{4} 4 y^{-2} d y \\
& =4 \pi\left[-\frac{1}{y}\right]_{1}^{4} \\
& =4 \pi\left[\left(-\frac{1}{4}\right)-\left(-\frac{1}{1}\right)\right] \\
& =3 \pi
\end{aligned}
$$

## Math 181, Exam 1, Study Guide <br> Problem 14 Solution

14. In some chemical reactions, the rate at which the amount of a substance changes with time is proportional to the amount present. Consider a substance whose amount obeys the equation:

$$
\frac{d y}{d t}=-0.6 y
$$

where $t$ is measured in hours. If there are 100 grams of the substance present when $t=0$, how many grams will be left after 1 hour?

Solution: The amount of the substance $y(t)$ is given by the formula:

$$
y(t)=y_{0} e^{-0.06 t}
$$

where $y_{0}=100$ grams is the initial amount of the substance. After 1 hour, the amount of the substance is:

$$
y(1)=100 e^{-0.06} \text { grams }
$$

## Math 181, Exam 1, Study Guide <br> Problem 15 Solution

15. Suppose the rate at which the number of people infected with a disease $\frac{d y}{d t}$ is proportional to the number of people currently infected $y$ :

$$
\frac{d y}{d t}=k y
$$

Suppose that, in the course of any given year, the number of people infected is reduced by $20 \%$. If there are 10,000 infected people today, how many years will it take to reduce the number to 1000 ?

Solution: The number of people infected is given by the function:

$$
y(t)=y_{0} e^{k t}
$$

where $y_{0}=10,000$ is the initial number of people infected. To answer the question in the problem, we need to find the value of $k$. Since the number of people infected is reduced by $20 \%$ in the course of any given year, the number of people infected after the first year is:

$$
10,000-0.20(10,000)=8,000
$$

This corresponds to the value $y(1)$. Using the function above for $y(t)$ we get:

$$
\begin{aligned}
y(1) & =10,000 e^{k(1)} \\
8,000 & =10,000 e^{k} \\
e^{k} & =\frac{8,000}{10,000} \\
e^{k} & =\frac{4}{5} \\
k & =\ln \frac{4}{5}
\end{aligned}
$$

To find how many years it will take for the number of infected people to reduce to 1,000 , we set $y(t)$ equal to 1,000 and solve for $t$.

$$
\begin{aligned}
y(t) & =10,000 e^{\left(\ln \frac{4}{5}\right) t} \\
1,000 & =10,000 e^{\left(\ln \frac{4}{5}\right) t} \\
\frac{1,000}{10,000} & =e^{\left(\ln \frac{4}{5}\right) t} \\
\frac{1}{10} & =e^{\left(\ln \frac{4}{5}\right) t} \\
\ln \frac{1}{10} & =\left(\ln \frac{4}{5}\right) t \\
t & =\frac{\ln \frac{1}{10}}{\ln \frac{4}{5}}
\end{aligned}
$$

## Math 181, Exam 1, Study Guide Problem 16 Solution

16. Consider the definite integral:

$$
\int_{0}^{4}\left(x^{2}+x\right) d x
$$

(a) Compute the exact value of the integral.
(b) Estimate the value of the integral using the Trapezoidal Rule with $N=4$.
(c) Estimate the value of the integral using Simpson's Rule with $N=4$.
(d) Which of the above two estimate is more accurate?

## Solution:

(a) The exact value is:

$$
\begin{aligned}
\int_{0}^{4}\left(x^{2}+x\right) d x & =\left[\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]_{0}^{4} \\
& =\frac{1}{3}(4)^{3}+\frac{1}{2}(4)^{2} \\
& =\frac{88}{3}
\end{aligned}
$$

(b) Using $N=4$, the length of each subinterval of $[0,4]$ is:

$$
\Delta x=\frac{b-a}{N}=\frac{4-0}{4}=1
$$

The estimate $T_{4}$ is:

$$
\begin{aligned}
T_{4} & =\frac{\Delta x}{2}[f(0)+2 f(1)+2 f(2)+2 f(3)+f(4)] \\
& =\frac{1}{2}\left[\left(0^{2}+0\right)+2\left(1^{2}+1\right)+2\left(2^{2}+2\right)+2\left(3^{2}+3\right)+\left(4^{2}+4\right)\right] \\
& =\frac{1}{2}[0+4+12+24+20] \\
& =30
\end{aligned}
$$

(c) The estimate $S_{4}$ is:

$$
\begin{aligned}
S_{4} & =\frac{\Delta x}{3}[f(0)+4 f(1)+2 f(2)+4 f(3)+f(4)] \\
& =\frac{1}{3}\left[\left(0^{2}+0\right)+4\left(1^{2}+1\right)+2\left(2^{2}+2\right)+4\left(3^{2}+3\right)+\left(4^{2}+4\right)\right] \\
& =\frac{1}{3}[0+8+12+48+20] \\
& =\frac{88}{3}
\end{aligned}
$$

(d) Clearly, $S_{4}$ is more accurate because it is the exact value of the integral.

## Math 181, Exam 1, Study Guide <br> Problem 17 Solution

17. Consider the definite integral:

$$
\int_{0}^{2} \frac{d x}{1+x^{2}}
$$

Estimate the value of the integral using:
(a) the Trapezoidal Rule with $N=2$
(b) the Midpoint method with $N=2$
(c) Simpson's Rule with $N=4$

## Solution:

(a) The length of each subinterval of $[0,2]$ is:

$$
\Delta x=\frac{b-a}{N}=\frac{2-0}{2}=1
$$

The estimate $T_{2}$ is:

$$
\begin{aligned}
T_{2} & =\frac{\Delta x}{2}[f(0)+2 f(1)+f(2)] \\
& =\frac{1}{2}\left[\frac{1}{1+0^{2}}+2 \cdot \frac{1}{1+1^{2}}+\frac{1}{1+2^{2}}\right] \\
& =\frac{1}{2}\left[1+1+\frac{1}{5}\right] \\
& =\frac{11}{10}
\end{aligned}
$$

(b) The length of each subinterval of $[0,2]$ is $\Delta x=1$ just as in part (a). The estimate $M_{2}$ is:

$$
\begin{aligned}
M_{2} & =\Delta x\left[f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)\right] \\
& =1 \cdot\left[\frac{1}{1+\left(\frac{1}{2}\right)^{2}}+\frac{1}{1+\left(\frac{3}{2}\right)^{2}}\right] \\
& =\frac{4}{5}+\frac{4}{13} \\
& =\frac{72}{65}
\end{aligned}
$$

(c) We can use the following formula to find $S_{4}$ :

$$
S_{4}=\frac{2}{3} M_{2}+\frac{1}{3} T_{2}
$$

where $M_{2}$ and $T_{2}$ were found in parts (a) and (b). We get:

$$
\begin{aligned}
S_{4} & =\frac{2}{3}\left(\frac{72}{65}\right)+\frac{1}{3}\left(\frac{11}{10}\right) \\
& =\frac{48}{65}+\frac{11}{30} \\
& =\frac{431}{390}
\end{aligned}
$$

