Math 181, Exam 2, Fall 2007
 Problem 1 Solution

1. Compute the integral:

$$
\int 2 x \sqrt{1-x^{4}} d x
$$

Solution: We begin by using the u-substitution method. Let $u=x^{2}$. Then $d u=2 x d x$ and we get:

$$
\begin{aligned}
\int 2 x \sqrt{1-x^{4}} d x & =\int 2 x \sqrt{1-\left(x^{2}\right)^{2}} d x \\
& =\int \sqrt{1-u^{2}} d u
\end{aligned}
$$

We now use a trigonometric substitution to evaluate this integral. Let $u=\sin \theta$. Then $d u=\cos \theta d \theta$ and we get:

$$
\begin{aligned}
\int \sqrt{1-u^{2}} d u & =\int \sqrt{1-\sin ^{2} \theta}(\cos \theta d \theta) \\
& =\int \cos \theta \cos \theta d \theta \\
& =\int \cos ^{2} \theta d \theta \\
& =\int \frac{1}{2}[1+\cos (2 \theta)] d \theta \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)+C \\
& =\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta+C
\end{aligned}
$$

To write the result in terms of u we use the fact that:

$$
\theta=\arcsin u, \quad \sin \theta=u, \quad \cos \theta=\sqrt{1-u^{2}}
$$

to get:

$$
\int \sqrt{1-u^{2}} d u=\frac{1}{2} \arcsin u+\frac{1}{2} u \sqrt{1-u^{2}}+C
$$

Finally, we write the answer in terms of x replacing u with x^{2} :

$$
\int 2 x \sqrt{1-x^{4}} d x=\frac{1}{2} \arcsin \left(x^{2}\right)+\frac{1}{2} x^{2} \sqrt{1-x^{4}}+C
$$

Math 181, Exam 2, Fall 2007
 Problem 2 Solution

2. Determine whether the following integrals converge or not:

$$
\int_{2}^{+\infty} \frac{x}{x^{2}+1} d x \quad \int_{0}^{1} \frac{d x}{x^{1 / 3}}
$$

Solution: The first integral is improper due to the infinite upper limit of integration. We will evaluate the integral by turning it into a limit calculation.

$$
\int_{2}^{+\infty} \frac{x}{x^{2}+1} d x=\lim _{R \rightarrow+\infty} \int_{2}^{R} \frac{x}{x^{2}+1} d x
$$

We use the u-substitution method to compute the integral. Let $u=x^{2}+1$ and $d u=$ $2 x d x \quad \Rightarrow \quad \frac{1}{2} d u=x d x$. The indefinite integral is then:

$$
\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|=\frac{1}{2} \ln \left(x^{2}+1\right)
$$

The definite integral from 2 to R is:

$$
\begin{aligned}
\int_{2}^{R} \frac{x}{x^{2}+1} d x & =\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{2}^{R} \\
& =\frac{1}{2}\left[\ln \left(R^{2}+1\right)-\ln \left(2^{2}+1\right)\right]
\end{aligned}
$$

Taking the limit as $R \rightarrow+\infty$ we get:

$$
\begin{aligned}
\int_{2}^{+\infty} \frac{x}{x^{2}+1} d x & =\lim _{R \rightarrow+\infty} \int_{2}^{R} \frac{x}{x^{2}+1} d x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{2}\left[\ln \left(R^{2}+1\right)-\ln \left(2^{2}+1\right)\right] \\
& =\frac{1}{2}[+\infty-\ln 5] \\
& =\infty
\end{aligned}
$$

Therefore, the integral diverges.
The second integral is a p-integral of the form $\int_{0}^{1} \frac{d x}{x^{p}}$ where $p=\frac{1}{3}<1$. Therefore, the integral converges and its value is:

$$
\int_{0}^{1} \frac{d x}{x^{1 / 3}}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}
$$

Math 181, Exam 2, Fall 2007
 Problem 3 Solution

3. Compute the following integral:

$$
\int_{2}^{+\infty} x e^{-3 x} d x
$$

Solution: We evaluate the integral by turning it into a limit calculation.

$$
\int_{2}^{+\infty} x e^{-3 x} d x=\lim _{R \rightarrow+\infty} \int_{2}^{R} x e^{-3 x} d x
$$

We use Integration by Parts to compute the integral. Let $u=x$ and $v^{\prime}=e^{-3 x}$. Then $u^{\prime}=1$ and $v=-\frac{1}{3} e^{-x}$. Using the Integration by Parts formula we get:

$$
\begin{aligned}
\int_{a}^{b} u v^{\prime} d x & =[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x \\
\int_{2}^{R} x e^{-3 x} d x & =\left[-\frac{1}{3} x e^{-3 x}\right]_{2}^{R}-\int_{2}^{R}\left(-\frac{1}{3} e^{-3 x}\right) d x \\
& =\left[-\frac{1}{3} x e^{-3 x}\right]_{2}^{R}+\frac{1}{3} \int_{2}^{R} e^{-3 x} d x \\
& =\left[-\frac{1}{3} x e^{-3 x}\right]_{2}^{R}+\frac{1}{3}\left[-\frac{1}{3} e^{-3 x}\right]_{2}^{R} \\
& =\left[-\frac{1}{3} R e^{-3 R}+\frac{1}{3}(2) e^{-3(2)}\right]+\frac{1}{3}\left[-\frac{1}{3} e^{-3 R}+\frac{1}{3} e^{-3(2)}\right] \\
& =-\frac{R}{3 e^{3 R}}+\frac{2}{3 e^{6}}-\frac{1}{9 e^{3 R}}+\frac{1}{9 e^{6}}
\end{aligned}
$$

We now take the limit of the above function as $R \rightarrow+\infty$.

$$
\begin{aligned}
\int_{2}^{+\infty} x e^{-3 x} d x & =\lim _{R \rightarrow+\infty} \int_{2}^{R} x e^{-3 x} d x \\
& =\lim _{R \rightarrow+\infty}\left(-\frac{R}{3 e^{3 R}}+\frac{2}{3 e^{6}}-\frac{1}{9 e^{3 R}}+\frac{1}{9 e^{6}}\right) \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{3 e^{3 R}}+\frac{2}{3 e^{6}}-\lim _{R \rightarrow+\infty} \frac{1}{9 e^{3 R}}+\frac{1}{9 e^{6}} \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{3 e^{3 R}}+\frac{2}{3 e^{6}}-0+\frac{1}{9 e^{6}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=}-\lim _{R \rightarrow+\infty} \frac{(R)^{\prime}}{\left(3 e^{3 R}\right)^{\prime}}+\frac{2}{3 e^{6}}-0+\frac{1}{9 e^{6}} \\
& =-\lim _{R \rightarrow+\infty} \frac{1}{9 e^{3 R}}+\frac{2}{3 e^{6}}-0+\frac{1}{9 e^{6}} \\
& =-0+\frac{2}{3 e^{6}}-0+\frac{1}{9 e^{6}} \\
& =\frac{7}{9 e^{6}}
\end{aligned}
$$

Math 181, Exam 2, Fall 2007
 Problem 4 Solution

4. Let R be the region defined by the x-axis, the graph of $y=2 x^{4}$, and the lines $x=0$ and $x=1$. Compute the volume of revolution obtained by rotating R around the x-axis.

Solution: We will use the Disk Method to compute the volume. The formula is:

$$
V=\pi \int_{a}^{b} f(x) d x
$$

where $f(x)=2 x^{4}, a=0$, and $b=1$. The volume is then:

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(2 x^{4}\right)^{2} d x \\
& =\pi \int_{0}^{1} 4 x^{8} d x \\
& =\pi\left[\frac{4}{9} x^{9}\right]_{0}^{1} \\
& =\frac{4 \pi}{9}
\end{aligned}
$$

Math 181, Exam 2, Fall 2007
 Problem 5 Solution

5 . Find the sum of the series:

$$
\sum_{n=3}^{+\infty} \frac{3^{2 n+3}}{4^{3 n-1}}
$$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=3}^{+\infty} \frac{3^{2 n+3}}{4^{3 n-1}}=\sum_{n=3}^{+\infty} \frac{3^{2 n} 3^{3}}{4^{3 n} 4^{-1}}=\sum_{n=3}^{+\infty} \frac{3^{3}}{4^{-1}} \cdot \frac{\left(3^{2}\right)^{n}}{\left(4^{3}\right)^{n}}=\sum_{n=3}^{+\infty} 108\left(\frac{9}{64}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{9}{64}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=3, c=108$, and $r=\frac{9}{64}$. The sum of the series is then:

$$
\sum_{n=3}^{+\infty} 108\left(\frac{9}{64}\right)^{n}=\left(\frac{9}{64}\right)^{3} \cdot \frac{108}{1-\frac{9}{64}}=\frac{19,683}{56,320}
$$

Math 181, Exam 2, Spring 2007
 Problem 6 Solution

6. Suppose that the random variable T has density function:

$$
p(t)= \begin{cases}5 t^{4} & \text { if } 0 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Compute the average of T and the median of T and the probability that T lies between $1 / 2$ and 2 .

Solution: The average of T is:

$$
\int_{a}^{b} t p(t) d t=\int_{0}^{1} t\left(5 t^{4}\right) d t=\int_{0}^{1} 5 t^{5} d t=\left[\frac{5}{6} t^{6}\right]_{0}^{1}=\frac{5}{6}
$$

The median of T is computed as follows:

$$
\begin{aligned}
\int_{a}^{x} p(t) d t & =\frac{1}{2} \\
\int_{0}^{x} 5 t^{4} d t & =\frac{1}{2} \\
{\left[t^{5}\right]_{0}^{x} } & =\frac{1}{2} \\
x^{5} & =\frac{1}{2} \\
x & =\frac{1}{\sqrt[5]{2}}
\end{aligned}
$$

The probability that T lies between $1 / 2$ and 2 is:

$$
\int_{1 / 2}^{2} p(t) d t=\int_{1 / 2}^{1} 5 t^{4} d t=\left[t^{5}\right]_{1 / 2}^{1}=1^{5}-\left(\frac{1}{2}\right)^{5}=\frac{31}{32}
$$

Math 181, Exam 2, Fall 2007
 Problem 7 Solution

7. Compute the area enclosed by the curve $r=3 \theta^{3}$ and the two axes in the first quadrant.

Solution: The formula for the area of the region bounded by the polar curve $r=f(\theta)$ and the two rays $\theta=\alpha$ and $\theta=\beta$ is:

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^{2} d \theta
$$

For $f(\theta)=3 \theta^{3}, \alpha=0$, and $\beta=\frac{\pi}{2}$ we have:

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 2}\left(3 \theta^{3}\right)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 2} 9 \theta^{6} d \theta \\
& =\frac{1}{2}\left[\frac{9}{7} \theta^{7}\right]_{0}^{\pi / 2} \\
& =\frac{9}{14}\left(\frac{\pi}{2}\right)^{7}
\end{aligned}
$$

Math 181, Exam 2, Fall 2007
 Problem 8 Solution

8. Find the length of the graph of the function $f(x)=6 x^{3 / 2}+1988$ between the points corresponding to $x=0$ and $x=1$.

Solution: The arclength is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\left(9 x^{1 / 2}\right)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+81 x} d x
\end{aligned}
$$

We now use the u-substitution $u=1+81 x$. Then $\frac{1}{81} d u=d x$, the lower limit of integration changes from 0 to 1 , and the upper limit of integration changes from 1 to 82 .

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+81 x} d x \\
& =\frac{1}{81} \int_{1}^{82} \sqrt{u} d u \\
& =\frac{1}{81}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{82} \\
& =\frac{1}{81}\left[\frac{2}{3}(82)^{3 / 2}-\frac{2}{3}(1)^{3 / 2}\right] \\
& =\frac{2}{243}\left[82^{3 / 2}-1\right]
\end{aligned}
$$

