Math 181, Exam 2, Fall 2011
 Problem 1 Solution

1. Compute the arc length of the graph of $f(x)=\sqrt{9-x^{2}}$ over $[0,3]$.

Solution: The arc length can be easily found by recognizing that the graph of the function is a quarter circle of radius 3 . Knowing that the arc length of a circle is $2 \pi r$, the arc length of $y=f(x)$ is

$$
\text { arc length }=\frac{1}{4} 2 \pi(3)=\frac{3 \pi}{2}
$$

One can also resort to finding arc length via the formula

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

where

$$
f^{\prime}(x)=-\frac{x}{\sqrt{9-x^{2}}}
$$

The arc length is then

$$
\begin{aligned}
L & =\int_{0}^{3} \sqrt{1+\left(-\frac{x}{\sqrt{9-x^{2}}}\right)^{2}} d x \\
L & =\int_{0}^{3} \sqrt{1+\frac{x^{2}}{9-x^{2}}} d x \\
L & =\int_{0}^{3} \sqrt{\frac{9-x^{2}+x^{2}}{9-x^{2}}} d x \\
L & =\int_{0}^{3} \frac{3}{\sqrt{9-x^{2}}} d x
\end{aligned}
$$

This integral may be solved using the trigonometric substitution $x=3 \sin \theta, d x=3 \cos \theta d \theta$. Then $\sqrt{9-x^{2}}=3 \cos \theta$ and we get

$$
\begin{aligned}
L & =\int_{0}^{3} \frac{3}{\sqrt{9-x^{2}}} d x \\
L & =\int_{0}^{\pi / 2} \frac{3}{3 \cos \theta}(3 \cos \theta d \theta) \\
L & =\int_{0}^{\pi / 2} 3 d \theta \\
L & =\frac{3 \pi}{2}
\end{aligned}
$$

Math 181, Exam 2, Fall 2011
 Problem 2 Solution

2. Determine the limit of the sequence $a_{n}=\frac{2 n^{2}+(0.3)^{n}}{3 n^{2}-n+1}$.

Solution: We begin by multiplying the function by $\frac{1}{n^{2}}$ divided by itself.

$$
\frac{2 n^{2}+(0.3)^{n}}{3 n^{2}-n+1} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\frac{2+\frac{(0.3)^{n}}{n^{2}}}{3-\frac{1}{n}+\frac{1}{n^{2}}}
$$

Using the limit laws for quotients, sums, and differences we find that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2+\frac{(0.3)^{n}}{n^{2}}}{3-\frac{1}{n}+\frac{1}{n^{2}}} \\
& \lim _{n \rightarrow \infty} a_{n}=\frac{\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} \frac{(0.3)^{n}}{n^{2}}}{\lim _{n \rightarrow \infty} 3-\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}} \\
& \lim _{n \rightarrow \infty} a_{n}=\frac{2+0}{3-0+0} \\
& \lim _{n \rightarrow \infty} a_{n}=\frac{2}{3}
\end{aligned}
$$

where we note that $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$ for $p>0$ and $\lim _{n \rightarrow \infty} r^{n}=0$ for $0<r<1$.

Math 181, Exam 2, Fall 2011
 Problem 3 Solution

3. Determine whether the improper integral converges, and if so, evaluate it:
(a) $\int_{1}^{\infty} x e^{-x} d x$
(b) $\int_{1}^{2} \frac{x}{x-1} d x$

Solution:

(a) We evaluate the first integral by turning it into a limit calculation.

$$
\int_{1}^{+\infty} x e^{-x} d x=\lim _{R \rightarrow+\infty} \int_{1}^{R} x e^{-x} d x
$$

We use Integration by Parts to compute the integral. Let $u=x$ and $v^{\prime}=e^{-x}$. Then $u^{\prime}=1$ and $v=-e^{-x}$. Using the Integration by Parts formula we get:

$$
\begin{aligned}
\int_{a}^{b} u v^{\prime} d x & =[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x \\
\int_{1}^{R} x e^{-x} d x & =\left[-x e^{-x}\right]_{1}^{R}-\int_{1}^{R}\left(-e^{-x}\right) d x \\
& =\left[-x e^{-x}\right]_{1}^{R}+\int_{1}^{R} e^{-x} d x \\
& =\left[-x e^{-x}\right]_{1}^{R}+\left[-e^{-x}\right]_{1}^{R} \\
& =\left[-R e^{-R}+1 \cdot e^{-1}\right]+\left[-e^{-R}+e^{-1}\right] \\
& =-\frac{R}{e^{R}}+\frac{1}{e}-\frac{1}{e^{R}}+\frac{1}{e} \\
& =-\frac{R}{e^{R}}-\frac{1}{e^{R}}+\frac{2}{e}
\end{aligned}
$$

We now take the limit of the above function as $R \rightarrow+\infty$.

$$
\begin{aligned}
\int_{1}^{+\infty} x e^{-x} d x & =\lim _{R \rightarrow+\infty} \int_{1}^{R} x e^{-x} d x \\
& =\lim _{R \rightarrow+\infty}\left(-\frac{R}{e^{R}}-\frac{1}{e^{R}}+\frac{2}{e}\right) \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{e^{R}}-\lim _{R \rightarrow+\infty} \frac{1}{e^{R}}+\frac{2}{e} \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{e^{R}}-0+\frac{2}{e} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=}-\lim _{R \rightarrow+\infty} \frac{(R)^{\prime}}{\left(e^{R}\right)^{\prime}}-0+\frac{2}{e} \\
& =-\lim _{R \rightarrow+\infty} \frac{1}{e^{R}}-0+\frac{2}{e} \\
& =-0-0+\frac{2}{e} \\
& =\frac{2}{e}
\end{aligned}
$$

(b) We begin by letting $u=x-1$. Then $d u=d x$ and the limits of integration become $u=1-1=0$ and $u=2-1=1$. Furthermore, since $u=x-1$ we have $x=u+1$. Making these substitutions we get

$$
\int_{1}^{2} \frac{x}{x-1} d x=\int_{0}^{1} \frac{u+1}{u} d u=\int_{0}^{1}\left(1+\frac{1}{u}\right) d u=\int_{0}^{1} 1 d u+\int_{0}^{1} \frac{1}{u} d u
$$

The first integral is proper and evaluates to 1 . However, the second integral is improper and diverges because it is a p-integral of the form $\int_{0}^{1} \frac{1}{u^{p}} d u$ where $p \geq 1$. Therefore, the given integral diverges.

Math 181, Exam 2, Fall 2011
 Problem 4 Solution

4. State whether the given series is convergent or not. If convergent find its sum.
(a) $\sum_{n=1}^{\infty} \frac{1}{2^{2 n}}$
(b) $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}}$

Solution:

(a) We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=1}^{\infty} \frac{1}{2^{2 n}}=\sum_{n=1}^{\infty} \frac{1}{4^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{4}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{1}{4}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=1, c=1$, and $r=\frac{1}{4}$. The sum of the series is then:

$$
\sum_{n=1}^{\infty}\left(\frac{1}{4}\right)^{n}=\left(\frac{1}{4}\right)^{1} \cdot \frac{1}{1-\frac{1}{4}}=\frac{1}{3}
$$

(b) We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}
$$

This is a divergent geometric series because $|r|=\left|\frac{3}{2}\right|>1$.

Math 181, Exam 2, Fall 2011
 Problem 5 Solution

5. Find the values of x for which the following series converges:

$$
\sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n}
$$

Solution: We determine the radius of convergence using the Ratio Test.

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} x^{n+1}}{n+1} \cdot \frac{n}{3^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{3^{n}} \cdot \frac{n}{n+1} \cdot \frac{x^{n+1}}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|3\left(\frac{n}{n+1}\right) x\right| \\
& =\lim _{n \rightarrow \infty}\left|3\left(\frac{1}{1+\frac{1}{n}}\right) x\right| \\
& =3|x| \lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right) \\
& =3|x|
\end{aligned}
$$

In order to achieve convergence, it must be the case that $\rho=3|x|<1$. Therefore, $|x|<\frac{1}{3}$. We must now check the endpoints. Plugging $x=\frac{1}{3}$ into the given power series we get:

$$
\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{1}{3}\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is a divergent p-series $(p=1 \leq 1)$. Plugging in $x=-\frac{1}{3}$ we get:

$$
\sum_{n=1}^{\infty} \frac{3^{n}\left(-\frac{1}{3}\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

i.e. the alternating harmonic series, which converges by the Leibniz Test. Thus, the interval of convergence is:

$$
-\frac{1}{3} \leq x<\frac{1}{3}
$$

