Math 181, Exam 2, Fall 2012
 Problem 1 Solution

1. Find the sums of the following series.
(a) $\sum_{k=1}^{\infty} \frac{6}{(k+2)(k+3)}$
(b) $\sum_{k=2}^{\infty} \frac{2^{k}+4}{e^{k}}$

Solution:

(a) This series is telescoping. We begin by decomposing the summand using partial fractions. The result is

$$
\frac{6}{(k+2)(k+3)}=\frac{6}{k+2}-\frac{6}{k+3}
$$

The nth partial sum of the series is:

$$
\begin{aligned}
& S_{n}=6 \sum_{k=1}^{n}\left(\frac{1}{k+2}-\frac{1}{k+3}\right) \\
& S_{n}=6\left[\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\right] \\
& S_{n}=6\left[\frac{1}{3}-\frac{1}{n+3}\right]
\end{aligned}
$$

The sum is then

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{6}{(k+2)(k+3)}=\lim _{n \rightarrow \infty} S_{n} \\
& \sum_{k=1}^{\infty} \frac{6}{(k+2)(k+3)}=\lim _{n \rightarrow \infty} 6\left[\frac{1}{3}-\frac{1}{n+3}\right] \\
& \sum_{k=1}^{\infty} \frac{6}{(k+2)(k+3)}=6\left[\frac{1}{3}-0\right] \\
& \sum_{k=1}^{\infty} \frac{6}{(k+2)(k+3)}=2
\end{aligned}
$$

(b) This is a sum of two geometric series. We begin by rewriting the series as follows:

$$
\sum_{k=2}^{\infty} \frac{2^{k}+4}{e^{k}}=\sum_{k=2}^{\infty}\left(\frac{2}{e}\right)^{k}+\sum_{k=2}^{\infty} 4\left(\frac{1}{e}\right)^{k}
$$

In the first series on the right hand side, we have $r=\frac{2}{e}$ and $a=1$. Since the series starts at $k=2$, the sum is

$$
\sum_{k=2}^{\infty}\left(\frac{2}{e}\right)^{k}=\left(\frac{2}{e}\right)^{2} \cdot \frac{1}{1-\frac{2}{e}}=\frac{4}{e^{2}-2 e}
$$

In the second series on the right hand side, we have $r=\frac{1}{e}$ and $a=4$. Since the series starts at $k=2$, the sum is

$$
\sum_{k=2}^{\infty} 4\left(\frac{1}{e}\right)^{k}=\left(\frac{1}{e}\right)^{2} \cdot \frac{4}{1-\frac{1}{e}}=\frac{4}{e^{2}-e}
$$

Thus, the sum of the series is

$$
\sum_{k=2}^{\infty} \frac{2^{k}+4}{e^{k}}=\frac{4}{e^{2}-2 e}+\frac{4}{e^{2}-e}
$$

Math 181, Exam 2, Fall 2012
 Problem 2 Solution

2. Evaluate each integral or show that it diverges.
(a) $\int_{1}^{\infty} \frac{x}{x^{4}+1} d x$
(b) $\int_{0}^{1} \frac{2}{x(x+2)} d x$

Solution:

(a) The first step we take is to convert the integral into a limit calculation:

$$
\int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{x^{4}+1} d x
$$

To evaluate the integral we make the substitution $u=x^{2}, \frac{1}{2} d u=x d x$. Focusing on the indefinite integral we have

$$
\int \frac{x}{x^{4}+1} d x=\frac{1}{2} \int \frac{1}{u^{2}+1} d u=\frac{1}{2} \arctan (u)=\frac{1}{2} \arctan \left(x^{2}\right)
$$

We now evaluate the improper integral as follows:

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{x^{4}+1} d x \\
& \int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\lim _{b \rightarrow \infty}\left[\frac{1}{2} \arctan \left(x^{2}\right)\right]_{1}^{b} \\
& \int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\lim _{b \rightarrow \infty} \frac{1}{2} \arctan \left(b^{2}\right)-\frac{1}{2} \arctan (1) \\
& \int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\frac{1}{2} \cdot \frac{\pi}{2}-\frac{1}{2} \cdot \frac{\pi}{4} \\
& \int_{1}^{\infty} \frac{x}{x^{4}+1} d x=\frac{\pi}{8}
\end{aligned}
$$

(b) Again, the first step is to convert the integral into a limit calculation. Since the integrand has an infinite discontinuity at $x=0$, we replace the lower limit of integration with a and take the limit as $a \rightarrow 0^{+}$:

$$
\int_{0}^{1} \frac{2}{x(x+2)} d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{2}{x(x+2)} d x
$$

The integrand decomposes into:

$$
\frac{2}{x(x+2)}=\frac{1}{x}-\frac{1}{x+2}
$$

by way of the method of partial fractions. We now evaluate the improper integral as follows:

$$
\begin{aligned}
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{2}{x(x+2)} d x \\
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\lim _{a \rightarrow 0^{+}}[\ln (x)-\ln (x+2)]_{a}^{1} \\
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\lim _{a \rightarrow 0^{+}}\left[\ln \left(\frac{x}{x+2}\right)\right]_{a}^{1} \\
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\lim _{a \rightarrow 0^{+}} \ln \left(\frac{1}{1+2}\right)-\ln \left(\frac{a}{a+2}\right) \\
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\ln \left(\frac{1}{3}\right)-(-\infty) \\
& \int_{0}^{1} \frac{2}{x(x+2)} d x=\infty
\end{aligned}
$$

Thus, the integral diverges.

Math 181, Exam 2, Fall 2012
 Problem 3 Solution

3. Find the limits of the following sequences or show that they diverge.
(a) $\left\{\frac{2 n-\sin (n)}{4 n+1}\right\}$
(b) $\left\{\frac{n 2^{n}}{3^{n}}\right\}$

Solution:

(a) Since $-1 \leq \sin (n) \leq 1$ for all n we have

$$
\frac{2 n-1}{4 n+1} \leq \frac{2 n-\sin (n)}{4 n+1} \leq \frac{2 n+1}{4 n+1}
$$

Moreover,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{2 n-1}{4 n+1}=\frac{2}{4}=\frac{1}{2} \\
& \lim _{n \rightarrow \infty} \frac{2 n+1}{4 n+1}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \frac{2 n-\sin (n)}{4 n+1}=\frac{1}{2}$ by the Squeeze Theorem.
(b) We begin be rewriting $f(n)$ as follows:

$$
\frac{n 2^{n}}{3^{n}}=\frac{n}{\left(\frac{3}{2}\right)^{n}}
$$

Using the fact that $n \ll\left(\frac{3}{2}\right)^{n}$ as $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} \frac{n 2^{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{n}{\left(\frac{3}{2}\right)^{n}}=0
$$

Math 181, Exam 2, Fall 2012
 Problem 4 Solution

4. Approximate the value of the definite integral $\int_{0}^{2} \frac{1}{2 x+1} d x$ using
(a) the Midpoint Rule with $N=2$ and
(b) the Trapezoidal Rule with $N=2$.

Solution:

(a) Since $N=2$ we have $\Delta x=\frac{b-a}{N}=\frac{2-0}{2}=1$. The interval $[0,2]$ is partitioned into the intervals $[0,1]$ and $[1,2]$. The midpoints of these intervals are $\frac{1}{2}$ and $\frac{3}{2}$. Thus, the Midpoint estimate of the integral is

$$
\begin{aligned}
& M_{2}=\Delta x\left[f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)\right] \\
& M_{2}=1 \cdot\left[\frac{1}{2\left(\frac{1}{2}\right)+1}+\frac{1}{2\left(\frac{3}{2}\right)+1}\right] \\
& M_{2}=1 \cdot\left[\frac{1}{1+1}+\frac{1}{3+1}\right] \\
& M_{2}=1 \cdot\left[\frac{1}{2}+\frac{1}{4}\right] \\
& M_{2}=\frac{3}{4}
\end{aligned}
$$

(b) Since $N=2$ we have $\Delta x=\frac{b-a}{N}=\frac{2-0}{2}=1$. The interval [0,2] is partitioned into the intervals $[0,1]$ and $[1,2]$. Thus, the Trapezoidal estimate of the integral is

$$
\begin{aligned}
& T_{2}=\frac{1}{2} \Delta x[f(0)+2 f(1)+f(2)] \\
& T_{2}=\frac{1}{2}\left[\frac{1}{2(0)+1}+2 \cdot \frac{1}{2(1)+1}+\frac{1}{2(2)+1}\right] \\
& T_{2}=\frac{1}{2}\left[1+\frac{2}{3}+\frac{1}{5}\right] \\
& T_{2}=\frac{14}{15}
\end{aligned}
$$

Math 181, Exam 2, Fall 2012
 Problem 5 Solution

5. Determine whether or not the following infinite series converge. Justify your answers.
(a) $\sum_{k=1}^{\infty} \frac{k-1}{k^{3}+5}$
(b) $\sum_{k=3}^{\infty} \frac{1}{(\ln k)^{10}}$

Solution:

(a) Let $a_{k}=\frac{k-1}{k^{3}+5}$ and $b_{k}=\frac{1}{k^{2}}$. The series $\sum b_{k}$ is a convergent p-series. Moreover,

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{k}}{b_{k}} \\
L & =\lim _{n \rightarrow \infty} \frac{\frac{k-1}{k^{3}+5}}{\frac{1}{k^{2}}} \\
L & =\lim _{n \rightarrow \infty} \frac{k^{3}-k^{2}}{k^{3}+5} \\
L & =\lim _{n \rightarrow \infty} \frac{k^{3}-k^{2}}{k^{3}+5} \cdot \frac{\frac{1}{k^{3}}}{\frac{1}{k^{3}}} \\
L & =\lim _{n \rightarrow \infty} \frac{1-\frac{1}{k}}{1+\frac{5}{k^{3}}} \\
L & =\frac{1-0}{1+0} \\
L & =1
\end{aligned}
$$

Since $0<L<\infty$ and $\sum b_{k}$ converges, the series $\sum a_{k}$ converges by the Limit Comparison Test.
(b) Let $a_{k}=\frac{1}{(\ln k)^{10}}$ and $b_{k}=\frac{1}{k}$. The series $\sum b_{k}$ is a divergent p-series. Moreover,

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \frac{a_{k}}{b_{k}} \\
& L=\lim _{n \rightarrow \infty} \frac{\frac{1}{(\ln k)^{10}}}{\frac{1}{k}} \\
& L=\lim _{n \rightarrow \infty} \frac{k}{(\ln k)^{10}} \\
& L=\infty
\end{aligned}
$$

using the fact that $(\ln k)^{10} \ll k$ as $k \rightarrow \infty$. Since $L=\infty$ and $\sum b_{k}$ diverges, the series $\sum a_{k}$ diverges by the Limit Comparison Test.

