Math 181, Exam 2, Fall 2014
 Problem 1 Solution

1. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral:

$$
\int \sin ^{3}(x) \sqrt{\cos (x)} d x
$$

Solution: We begin by rewriting $\sin ^{3}(x)$ as

$$
\sin ^{3}(x)=\sin (x) \sin ^{2}(x)=\sin (x)\left(1-\cos ^{2}(x)\right)
$$

Then, after using the substitution

$$
u=\cos (x), \quad-d u=\sin (x) d x
$$

we have the following result:

$$
\begin{aligned}
\int \sin ^{3}(x) \sqrt{\cos (x)} d x & =\int \sin (x)\left(1-\cos ^{2}(x)\right) \sqrt{\cos (x)} d x \\
& =\int \underbrace{\left(1-\cos ^{2}(x)\right)}_{1-u^{2}} \underbrace{\sqrt{\cos (x)}}_{\sqrt{u}} \underbrace{\sin (x) d x}_{-d u} \\
& =\int\left(1-u^{2}\right) \sqrt{u}(-d u) \\
& =-\int\left(1-u^{2}\right) u^{1 / 2} d u \\
& =-\int\left(u^{1 / 2}-u^{5 / 2}\right) d u \\
& =-\frac{2}{3} u^{3 / 2}+\frac{2}{7} u^{7 / 2}+C \\
& =-\frac{2}{3}(\cos (x))^{3 / 2}+\frac{2}{7}(\cos (x))^{7 / 2}+C .
\end{aligned}
$$

Math 181, Exam 2, Fall 2014
 Problem 2 Solution

2. Integrals, Part II (Trigonometric substitutions: 6 points). Evaluate the following integral. Do not forget to simplify your answer completely - the final answer should not contain inverse trigonometric functions!

$$
\int \frac{1}{\left(4+x^{2}\right)^{3 / 2}} d x
$$

Solution: We begin with the substitition

$$
x=2 \tan \theta, \quad d x=2 \sec ^{2} \theta d \theta
$$

Using the above substitution, the integral transforms as follows:

$$
\begin{aligned}
\int \frac{1}{\left(4+x^{2}\right)^{3 / 2}} d x & =\int \frac{1}{\left(4+(2 \tan \theta)^{2}\right)^{3 / 2}} 2 \sec ^{2} \theta d \theta \\
& =\int \frac{1}{(\underbrace{4+4 \tan ^{2} \theta}_{4 \sec ^{2} \theta})^{3 / 2}} 2 \sec ^{2} \theta d \theta \\
& =\int \frac{1}{\left(4 \sec ^{2} \theta\right)^{3 / 2}} 2 \sec ^{2} \theta d \theta \\
& =\int \frac{1}{4^{3 / 2}\left(\sec ^{2} \theta\right)^{3 / 2}} 2 \sec ^{2} \theta d \theta \\
& =\int \frac{1}{8 \sec ^{3} \theta} 2 \sec ^{2} \theta d \theta \\
& =\frac{1}{4} \int \frac{1}{\sec \theta} d \theta \\
& =\frac{1}{4} \int \cos \theta d \theta
\end{aligned}
$$

The result of the above integral is

$$
\int \frac{1}{\left(4+x^{2}\right)^{3 / 2}} d x=\frac{1}{4} \int \cos \theta d \theta=\frac{1}{4} \sin \theta+C
$$

Finally, we write the answer in terms of x. To do this, we return to the substitution $x=2 \tan \theta$ and rewrite the equation as

$$
\tan \theta=\frac{x}{2}=\frac{\text { opposite }}{\text { adjacent }}
$$

where "opposite" is the side opposite the angle θ in the right triangle below and "adjacent" is the side adjacent to θ.

The hypotenuse of the right triangle is $\sqrt{x^{2}+4}$ by way of Pythagoras' Theorem. Thus, an expression for $\sin \theta$ in terms of x is

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{x}{\sqrt{x^{2}+4}}
$$

Our final answer is now

$$
\int \frac{1}{\left(4+x^{2}\right)^{3 / 2}} d x=\frac{1}{4} \sin \theta+C=\frac{1}{4} \cdot \frac{x}{\sqrt{x^{2}+4}}+C .
$$

Math 181, Exam 2, Fall 2014

 Problem 3 Solution

 Problem 3 Solution}
3. Integrals, Part III (Partial fractions decompositions: 8 points). Evaluate the integral:

$$
\int \frac{1}{x^{2}+x-6} d x
$$

Solution: The partial fraction decomposition method will be used to evaluate the integral. The denominator factors into:

$$
x^{2}+x-6=(x+3)(x-2)
$$

Since the denominator is a product of distinct linear factors, the integrand may be decomposed as follows:

$$
\frac{1}{x^{2}+x-6}=\frac{A}{x+3}+\frac{B}{x-2}
$$

We find the unknown constants A and B by first clearing denominators:

$$
1=A(x-2)+B(x+3)
$$

and then making two substitutions:

- $x=2 \Longrightarrow 1=A(2-2)+B(2+3)$ which yields $B=\frac{1}{5}$
- $x=-3 \Longrightarrow 1=A(-3-2)+B(-3+3)$ which yields $A=-\frac{1}{5}$

Substituting these values into the decomposition and integrating yields the following result:

$$
\int \frac{1}{x^{2}+x-6} d x=\int\left(\frac{-\frac{1}{5}}{x+3}+\frac{\frac{1}{5}}{x-2}\right) d x=-\frac{1}{5} \ln |x+3|+\frac{1}{5} \ln |x-2|+C
$$

Math 181, Exam 2, Fall 2014
 Problem 4 Solution

4. Integrals, Part IV (Improper integrals: 6 points). Evaluate the following improper integral or show that it diverges.

$$
\int_{0}^{\infty} x e^{-x} d x
$$

Solution: The upper limit of integration makes the integral improper. Thus, we replace the upper limit with b and take the limit of the integral as $b \rightarrow \infty$.

$$
\int_{0}^{\infty} x e^{-x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x} d x . \quad[1 \text { point }]
$$

The integral may be evaluated using integration by parts. We make the following definitions:

$$
u=x, \quad d v=e^{-x} d x
$$

which yield

$$
d u=d x, \quad v=-e^{-x}
$$

Thus, using the integration by parts formula, we have

$$
\begin{aligned}
\int_{0}^{b} u d v & =\left.u v\right|_{0} ^{b}-\int_{0}^{b} v d u \\
\int_{0}^{b} x e^{-x} d x & =\left.x\left(-e^{-x}\right)\right|_{0} ^{b}-\int_{0}^{b}\left(-e^{-x}\right) d x \\
& =-\left.x e^{-x}\right|_{0} ^{b}+\int_{0}^{b} e^{-x} d x \\
& =-x e^{-x}-\left.e^{-x}\right|_{0} ^{b} \\
& =-\left.e^{-x}(x+1)\right|_{0} ^{b} \\
& =-\left.\frac{x+1}{e^{x}}\right|_{0} ^{b} \\
& =-\frac{b+1}{e^{b}}+1
\end{aligned}
$$

The value of the improper integral is then

$$
\int_{0}^{\infty} x e^{-x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x} d x=\lim _{b \rightarrow \infty}(-\underbrace{\frac{b+1}{e^{b}}}_{\rightarrow 0}+1)=1
$$

where the limit of $\frac{b+1}{e^{b}}$ as $b \rightarrow \infty$ is 0 since $b+1 \ll e^{b}$ for large b.

Math 181, Exam 2, Fall 2014
 Problem 5 Solution

5. Integrals, Part V (Numerical integration: 8 points). Evaluate the integral

$$
\int_{0}^{2} \frac{1}{(2 x+1)^{2}} d x
$$

using:
(a) analytical methods, to obtain the exact solution;
(b) the Midpoint Method for numeral integration, with $n=2$ subintervals. Simplify your answer! Compare the two results by computing the absolute and the relative errors.

Solution:

(a) The Fundamental Theorem of Calculus yields the following exact solution:

$$
\int_{0}^{2} \frac{1}{(2 x+1)^{2}} d x=\left[-\frac{1}{2} \cdot \frac{1}{2 x+1}\right]_{0}^{2}=-\frac{1}{10}+\frac{1}{2}=\frac{2}{5}
$$

(b) The width of each subinterval of $[0,2]$ is given by

$$
\Delta x=\frac{2-0}{2}=1
$$

The two subintervals of $[0,2]$ are $[0,1]$ and $[1,2]$. The corresponding midpoints of these subintervals are

$$
m_{1}=\frac{1}{2}, \quad m_{2}=\frac{3}{2}
$$

The value of M_{2} is then

$$
\begin{aligned}
M_{2} & =\Delta x\left[f\left(m_{1}\right)+f\left(m_{2}\right)\right] \\
& =1 \cdot\left[f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)\right] \\
& =\frac{1}{\left(2 \cdot \frac{1}{2}+1\right)^{2}}+\frac{1}{\left(2 \cdot \frac{3}{2}+1\right)^{2}} \\
& =\frac{1}{4}+\frac{1}{16} \\
& =\frac{5}{16}
\end{aligned}
$$

Math 181, Exam 2, Fall 2014
 Problem 6 Solution

6. Sequences (5 points). For each of the following sequences, determine whether they have a limit or not, and if yes, then compute the limit.
(a) $a_{n}=\frac{2 n+1}{n^{2}-2}$ for all $n \geq 1$;
(b) $b_{n}=\sin (n \pi)$ for all $n \geq 1$.

Solution:

(a) The limit of the sequence is

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{2}-2} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{2}{n}+\frac{1}{n^{2}}}{1-\frac{2}{n^{2}}}=\frac{0+0}{1-0}=0
$$

(b) The terms of the sequence are

$$
\left\{a_{n}\right\}=\{\sin (\pi), \sin (2 \pi), \sin (3 \pi), \ldots, \sin (n \pi), \ldots\}=\{0,0,0, \ldots, 0, \ldots\}
$$

Thus, the limit of the sequence is 0 .

Math 181, Exam 1, Fall 2014
 Problem 7 Solution

7. Integrals, Part VI (7 points).

(a) Decompose the polynomial $q(x)=x^{3}-x^{2}+2 x-2$ into a product of irreducible factors, noticing that $q(1)=0$.
(b) Decompose the rational function $r(x)=\frac{x+2}{x^{3}-x^{2}+2 x-2}$ into its partial fraction decomposition.
(c) Evaluate $\int r(x) d x$.

Solution:

(a) We can factor $q(x)$ as follows:

$$
q(x)=\left(x^{3}-x^{2}\right)+(2 x-2)=x^{2}(x-1)+2(x-1)=\left(x^{2}+2\right)(x-1)
$$

where $x^{2}+2$ is irreducible because its discriminant, $b^{2}-4 a c=0^{2}-4(1)(2)=-8$, is negative.
(b) The partial fraction decomposition of $r(x)$ is

$$
\frac{x+2}{x^{3}-x^{2}+2 x-2}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+2}
$$

Clearing denominators gives us

$$
x+2=A\left(x^{2}+2\right)+(B x+C)(x-1)
$$

Expanding the right hand side and collecting like terms results in the equation

$$
\begin{aligned}
x+2 & =(A+B) x^{2}+(C-B) x+(2 A-C) \\
0 x^{2}+1 x+2 & =(A+B) x^{2}+(C-B) x+(2 A-C)
\end{aligned}
$$

Equating coefficients of x^{n} on both sides of the above equation gives us the following system of equations

$$
\begin{array}{ll}
x^{2}: & A+B=0 \\
x^{1}: & C-B=1 \\
x^{0}: & 2 A-C=2 .
\end{array}
$$

The solution to the system is $C=0, B=-1$, and $A=1$.
(c) The integral of $r(x)$ is then

$$
\int r(x) d x=\int\left(\frac{1}{x-1}-\frac{1}{x^{2}+2}\right) d x=\int \frac{1}{x-1} d x-\int \frac{x}{x^{2}+2} d x
$$

In the second integral on the right hand side above, we let $u=x^{2}+2$. Then $d u=2 x d x \quad \Rightarrow \quad \frac{1}{2} d u=x d x$ and we have

$$
\int \frac{x}{x^{2}+2} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|=\frac{1}{2} \ln \left(x^{2}+2\right)
$$

Thus, we have

$$
\int r(x) d x=\int \frac{1}{x-1} d x-\int \frac{1}{x^{2}+2} d x=\ln |x-1|-\frac{1}{2} \ln \left(x^{2}+2\right)+C
$$

Math 181, Exam 2, Fall 2014
 Problem 8 Solution

8. Integrals, Part VII (6 points). Evaluate the following integral:

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x
$$

Solution: Let $x=2 \sec \theta$ and $d x=2 \sec \theta \tan \theta d \theta$. Then

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x & =\int \frac{1}{(2 \sec \theta)^{2} \sqrt{(2 \sec \theta)^{2}-4}}(2 \sec \theta \tan \theta d \theta) \\
& =\int \frac{2 \sec \theta \tan \theta}{4 \sec ^{2} \theta \sqrt{4 \sec ^{2} \theta-4}} d \theta \\
& =\int \frac{\tan \theta}{2 \sec \theta \sqrt{4\left(\sec ^{2} \theta-1\right)}} d \theta \\
& =\int \frac{\tan \theta}{2 \sec \theta \sqrt{4} \sqrt{\sec ^{2} \theta-1}} d \theta \\
& =\int \frac{\tan \theta}{2 \sec \theta \cdot 2 \cdot \sqrt{\tan ^{2} \theta}} d \theta \\
& =\int \frac{\tan \theta}{4 \sec \theta \tan \theta} d \theta \\
& =\frac{1}{4} \int \cos \theta d \theta \\
& =\frac{1}{4} \sin \theta+C
\end{aligned}
$$

Since $x=2 \sec \theta$ we know that $\sec \theta=\frac{x}{2}$ which means that $\cos \theta=\frac{2}{x}$. We set up the following right triangle

Using Pythagoras' Theorem, the side opposite θ is $\sqrt{x^{2}-4}$. Therefore,

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x=\frac{1}{4} \sin \theta+C=\frac{1}{4} \cdot \frac{\sqrt{x^{2}-4}}{x}+C
$$

