Math 181, Exam 2, Spring 2006
 Problem 1 Solution

1. Compute the indefinite integral:

$$
\int \frac{d x}{x^{2}+4 x+5}
$$

Solution: We begin by completing the square.

$$
\int \frac{d x}{x^{2}+4 x+5}=\int \frac{d x}{(x+2)^{2}+1}
$$

We now evaluate the integral using the u-substitution method. Let $u=x+2$. Then $d u=d x$ and we get:

$$
\begin{aligned}
\int \frac{d x}{x^{2}+4 x+5} & =\int \frac{d x}{(x+2)^{2}+1} \\
& =\int \frac{d u}{u^{2}+1} \\
& =\arctan u+C \\
& =\arctan (x+2)+C
\end{aligned}
$$

Math 181, Exam 2, Spring 2006
 Problem 2 Solution

2. Determine if the following improper integrals converge or not. If they do compute their value.

$$
\int_{0}^{+\infty} x e^{-x} d x \quad \int_{1}^{+\infty} \frac{x+1}{x^{2}+x+1} d x
$$

Solution: Each integral is improper due to the infinite upper limit of integration. We evaluate the first integral by turning it into a limit calculation.

$$
\int_{0}^{+\infty} x e^{-x} d x=\lim _{R \rightarrow+\infty} \int_{0}^{R} x e^{-x} d x
$$

We use Integration by Parts to compute the integral. Let $u=x$ and $v^{\prime}=e^{-x}$. Then $u^{\prime}=1$ and $v=-e^{-x}$. Using the Integration by Parts formula we get:

$$
\begin{aligned}
\int_{a}^{b} u v^{\prime} d x & =[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x \\
\int_{0}^{R} x e^{-x} d x & =\left[-x e^{-x}\right]_{0}^{R}-\int_{0}^{R}\left(-e^{-x}\right) d x \\
& =\left[-x e^{-x}\right]_{0}^{R}+\int_{0}^{R} e^{-x} d x \\
& =\left[-x e^{-x}\right]_{0}^{R}+\left[-e^{-x}\right]_{0}^{R} \\
& =\left[-R e^{-R}+0 e^{-0}\right]+\left[-e^{-R}+e^{-0}\right] \\
& =-\frac{R}{e^{R}}-\frac{1}{e^{R}}+1
\end{aligned}
$$

We now take the limit of the above function as $R \rightarrow+\infty$.

$$
\begin{aligned}
\int_{0}^{+\infty} x e^{-x} d x & =\lim _{R \rightarrow+\infty} \int_{0}^{R} x e^{-x} d x \\
& =\lim _{R \rightarrow+\infty}\left(-\frac{R}{e^{R}}-\frac{1}{e^{R}}+1\right) \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{e^{R}}-\lim _{R \rightarrow+\infty} \frac{1}{e^{R}}+1 \\
& =-\lim _{R \rightarrow+\infty} \frac{R}{e^{R}}-0+1 \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=}-\lim _{R \rightarrow+\infty} \frac{(R)^{\prime}}{\left(e^{R}\right)^{\prime}}-0+1 \\
& =-\lim _{R \rightarrow+\infty} \frac{1}{e^{R}}-0+1 \\
& =-0-0+1 \\
& =1
\end{aligned}
$$

We will show that the second integral diverges using the Comparison Test. Let $f(x)=$ $\frac{x+1}{x^{2}+x+1}$. We must find a function $g(x)$ such that:
(1) $\int_{1}^{+\infty} g(x) d x$ diverges and (2) $0 \leq g(x) \leq f(x)$ for $x \geq 1$

We choose the function $g(x)$ by using the fact that $0 \leq x \leq x+1$ and $0 \leq x^{2}+x+1 \leq$ $x^{2}+x^{2}+x^{2}$ for $x \geq 1$. Then we get:

$$
\begin{aligned}
& 0 \leq \frac{x}{x^{2}+x^{2}+x^{2}} \leq \frac{x+1}{x^{2}+x+1} \\
& 0 \leq \frac{x}{3 x^{2}} \leq \frac{x+1}{x^{2}+x+1} \\
& 0 \leq \frac{1}{3 x} \leq \frac{x+1}{x^{2}+x+1}
\end{aligned}
$$

So we choose $g(x)=\frac{1}{3 x}$ so that $0 \leq g(x) \leq f(x)$ for $x \geq 1$. Furthermore, we know that:

$$
\int_{1}^{+\infty} g(x) d x=\int_{1}^{+\infty} \frac{1}{3 x} d x=\frac{1}{3} \int_{1}^{+\infty} \frac{1}{x} d x
$$

diverges because this is a p-integral with $p=1 \leq 1$. Thus, the integral $\int_{1}^{+\infty} \frac{x+1}{x^{2}+x+1} d x$ diverges by the Comparison Test.

Math 181, Exam 2, Spring 2006
 Problem 3 Solution

3. Let R be the region in the $x y$-plane bounded by $y=0$ and $y=x-x^{2}$ for $0 \leq x \leq 1$.
i) Set up an integral to evaluate the volume of the solid obtained by revolving the region R about the line $y=-3$.
ii) Compute the integral.

Solution:

i) We find the volume of the solid using the Washer Method. The variable of integration is x and the corresponding formula is:

$$
V=\pi \int_{a}^{b}\left[(\operatorname{top}-(-3))^{2}-(\operatorname{bottom}-(-3))^{2}\right] d x
$$

The top curve is $y=x-x^{2}$ and the bottom curve is $y=0$. The lower limit of integration is $x=0$ and the upper limit is $x=1$. The integral that represents the volume is:

$$
V=\pi \int_{0}^{1}\left[\left(x-x^{2}-(-3)\right)^{2}-(0-(-3))^{2}\right] d x
$$

ii) The volume is:

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left[\left(x-x^{2}-(-3)\right)^{2}-(0-(-3))^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[\left(x-x^{2}+3\right)^{2}-(0+3)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left(6 x-5 x^{2}-2 x^{3}+x^{4}\right) d x \\
& =\pi\left[3 x^{2}-\frac{5}{3} x^{3}-\frac{1}{2} x^{4}+\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =\pi\left(3-\frac{5}{3}-\frac{1}{2}+\frac{1}{5}\right) \\
& =\frac{31 \pi}{30}
\end{aligned}
$$

Math 181, Exam 2, Spring 2006
 Problem 4 Solution

4. A retail store chain conducted a customer satisfaction survey. Each completed questionnaire was processed and produced a satisfaction level t between 0 (complete disappointment) and 1 (complete satisfaction). The subsequent analysis showed that the density function of the satisfaction level is given by $p(t)=3 t^{2}$ for $0 \leq t \leq 1$ (and 0 otherwise).
i) Find what percentage of customers registered satisfaction level between $\frac{1}{3}$ and $\frac{2}{3}$.
ii) Find the mean value of t.
iii) Find the median of t.

Solution:

i) The percentage of customers registering a satisfaction level between a and b is given by the formula:

$$
\int_{a}^{b} p(t) d t
$$

Using $a=\frac{1}{3}, b=\frac{2}{3}$, and $p(t)=3 t^{2}$ we have:

$$
\int_{a}^{b} p(t) d t=\int_{1 / 3}^{2 / 3} 3 t^{2} d t=\left[t^{3}\right]_{1 / 3}^{2 / 3}=\left(\frac{2}{3}\right)^{3}-\left(\frac{1}{3}\right)^{3}=\frac{7}{27}
$$

ii) The mean value of t is given by the formula:

$$
\int_{a}^{b} t p(t) d t
$$

Using $a=0, b=1$, and $p(t)=3 t^{2}$ we have:

$$
\int_{a}^{b} t p(t) d t=\int_{0}^{1} t\left(3 t^{2}\right) d t=\int_{0}^{1} 3 t^{3} d t=\left[\frac{3}{4} t^{4}\right]_{0}^{1}=\frac{3}{4}
$$

iii) The median of t is the value of T such that

$$
\int_{a}^{T} p(t) d t=\frac{1}{2}
$$

Using $a=0$ and $p(t)=3 t^{2}$ we have:

$$
\begin{aligned}
\int_{a}^{T} p(t) d t & =\frac{1}{2} \\
\int_{0}^{T} 3 t^{2} d t & =\frac{1}{2} \\
{\left[t^{3}\right]_{0}^{T} } & =\frac{1}{2} \\
T^{3} & =\frac{1}{2} \\
T & =\frac{1}{\sqrt[3]{2}}
\end{aligned}
$$

Math 181, Exam 2, Spring 2006
 Problem 5 Solution

5. Compute the sum of the following series:

$$
\sum_{n=2}^{+\infty} \frac{2}{3^{n+3}}
$$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=2}^{+\infty} \frac{2}{3^{n+3}}=\sum_{n=2}^{+\infty} \frac{2}{3^{n} 3^{3}}=\sum_{n=2}^{+\infty} \frac{2}{3^{3}} \cdot \frac{1}{3^{n}}=\sum_{n=2}^{+\infty} \frac{2}{27}\left(\frac{1}{3}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{1}{3}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=2, c=\frac{2}{27}$, and $r=\frac{1}{3}$. The sum of the series is then:

$$
\sum_{n=2}^{+\infty} \frac{2}{27}\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{2} \cdot \frac{\frac{2}{27}}{1-\frac{1}{3}}=\frac{1}{81}
$$

Math 181, Exam 2, Spring 2006
 Problem 6 Solution

6. Determine whether the following series converge or not:

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} n^{3}}{2^{n}}, \quad \sum_{n=1}^{+\infty} \frac{3+2^{-n}}{\sqrt{n}}, \quad \sum_{n=1}^{+\infty} \frac{(-1)^{-n}}{\sqrt{n^{2}+n+1}}
$$

Solution: The first series is alternating. We check for absolute convergence by considering the series of absolute values:

$$
\sum_{n=1}^{+\infty}\left|\frac{(-1)^{n+1} n^{3}}{2^{n}}\right|=\sum_{n=1}^{+\infty} \frac{n^{3}}{2^{n}}
$$

We use the Ratio Test to determine whether or not this series converges.

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{2^{n+1}} \cdot \frac{2^{n}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(\frac{n+1}{n}\right)^{3} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(1+\frac{1}{n}\right)^{3} \\
& =\frac{1}{2}
\end{aligned}
$$

Since $\rho=\frac{1}{2}<1$, the series of absolute values converges by the Ratio Test. Therefore, the series $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} n^{3}}{2^{n}}$ converges.
Note: Here are the results of using the other convergence tests to determine whether or not $\sum_{n=1}^{+\infty} \frac{n^{3}}{2^{n}}$ converges.
(1) The Divergence Test fails because $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{3}}{2^{n}}=0$.
(2) The Integral Test will show that the series converges because the improper integral

$$
\int_{1}^{\infty} x^{3} 2^{-x} d x=\frac{6+(\ln 2)^{2}(3+\ln 2)+\ln 64}{2(\ln 2)^{4}}
$$

converges. However, in order to get the above result, we must integrate by parts three times.
(3) The Comparison Test with $\sum_{n=1}^{+\infty} r^{n}$, using any value of r satisfying $\frac{1}{2}<r<1$, shows that the series converges.
(4) The Limit Comparison Test with $\sum_{n=1}^{+\infty} r^{n}$, using any value of r satisfying $\frac{1}{2}<r<1$, or with $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$, using any $p>1$, shows that the series converges.
(5) The Root Test shows that the series converges because $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{3}}{2^{n}}}=\frac{1}{2}<1$. However, the limit calculation is not straightforward.

Rewriting the second series we have:

$$
\sum_{n=1}^{+\infty} \frac{3+2^{-n}}{\sqrt{n}}=3 \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}+\sum_{n=1}^{+\infty} \frac{1}{2^{n} \sqrt{n}}
$$

The series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$ diverges because it is a p-series with $p=\frac{1}{2}<1$. Therefore, the series $\sum_{n=1}^{+\infty} \frac{3+2^{-n}}{\sqrt{n}}$ diverges.

The third series is alternating so we test for convergence using the Leibniz Test. Let $a_{n}=$ $f(n)=\frac{1}{\sqrt{n^{2}+n+1}}$. The function $f(n)$ is decreasing for $n \geq 1$ and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+n+1}}=0
$$

Therefore, the series $\sum_{n=1}^{+\infty} \frac{(-1)^{-n}}{\sqrt{n^{2}+n+1}}$ converges by the Leibniz Test.

Math 181, Exam 2, Spring 2006
 Problem 7 Solution

7. Determine the radius of convergence of the power series:

$$
\sum_{n=1}^{+\infty} \frac{(-2)^{n}(x-2)^{n}}{n^{4}}
$$

Solution: We determine the radius of convergence using the Ratio Test.

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-2)^{n+1}(x-2)^{n+1}}{(n+1)^{4}} \cdot \frac{n^{4}}{(-2)^{n}(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-2)^{n+1}}{(-2)^{n}} \cdot \frac{n^{4}}{(n+1)^{4}} \cdot \frac{(x-2)^{n+1}}{(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(-2)^{1}\left(\frac{n}{n+1}\right)^{4}(x-2)\right| \\
& =\lim _{n \rightarrow \infty}\left|2\left(\frac{1}{1+\frac{1}{n}}\right)^{4}(x-2)\right| \\
& =2|x-2| \lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)^{4} \\
& =2|x-2|
\end{aligned}
$$

In order to achieve convergence, it must be the case that $\rho=2|x-2|<1$. Therefore, $|x-2|<\frac{1}{2}$ and the radius of convergence is $\frac{1}{2}$.

