Math 181, Exam 2, Spring 2008
 Problem 1 Solution

1. Compute the indefinite integral:

$$
\int \frac{8}{\sqrt{4-x^{2}}} d x
$$

Solution: We evaluate the integral using the u-substitution method. Let $u=\frac{x}{2}$. Then $d u=\frac{1}{2} d x \Rightarrow 2 d u=d x$ and $x=2 u$ and we get:

$$
\begin{aligned}
\int \frac{8}{\sqrt{4-x^{2}}} d x & =\int \frac{8}{\sqrt{4-(2 u)^{2}}}(2 d u) \\
& =\int \frac{16}{\sqrt{4-4 u^{2}}} d u \\
& =\int \frac{16}{\sqrt{4} \sqrt{1-u^{2}}} d u \\
& =8 \int \frac{1}{\sqrt{1-u^{2}}} d u \\
& =8 \arcsin u+C \\
& =8 \arcsin \left(\frac{x}{2}\right)+C
\end{aligned}
$$

Math 181, Exam 2, Spring 2008
 Problem 2 Solution

2. Consider the curve $y=\frac{1}{2} x^{2}$ over the interval $0 \leq x \leq 1$.
(a) Write the integral you would compute to find the length of the curve (do not solve the integral).
(b) Use the Trapezoidal Rule with $n=1$ to estimate the value of the integral from part (a).

Solution:

(a) The arclength formula is:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

where $\frac{d y}{d x}=\left(\frac{1}{2} x^{2}\right)^{\prime}=x, a=0$, and $b=1$. Therefore, the integral we would compute to find the length of the curve is

$$
L=\int_{0}^{1} \sqrt{1+x^{2}} d x
$$

(b) We now use the Trapezoidal Rule with $n=1$ to estimate the value of the integral. The formula we will use is:

$$
T_{1}=\frac{\Delta x}{2}[f(0)+f(1)]
$$

where $f(x)=\sqrt{1+x^{2}}$ and the value of Δx is:

$$
\Delta x=\frac{b-a}{n}=\frac{1-0}{1}=1
$$

The value of T_{1} is then:

$$
\begin{aligned}
T_{1} & =\frac{\Delta x}{2}[f(0)+f(1)] \\
& =\frac{1}{2}\left[\sqrt{1+0^{2}}+\sqrt{1+1^{2}}\right] \\
& =\frac{1}{2}(1+\sqrt{2})
\end{aligned}
$$

Math 181, Exam 2, Spring 2008
 Problem 3 Solution

3. Show whether the integral below diverges or converges. If it converges, find the value of the integral:

$$
\int_{3}^{\infty} \frac{d x}{\sqrt{x+1}}
$$

Solution: We evaluate the integral by turning it into a limit calculation.

$$
\int_{3}^{\infty} \frac{d x}{\sqrt{x+1}}=\lim _{R \rightarrow \infty} \int_{3}^{R} \frac{d x}{\sqrt{x+1}}
$$

We use the u-substitution method to compute the integral. Let $u=x+1$ and $d u=d x$. The indefinite integral then becomes

$$
\int \frac{d x}{\sqrt{x+1}}=\int \frac{d u}{\sqrt{u}}=2 \sqrt{u}=2 \sqrt{x+1}
$$

The definite integral from 3 to R is

$$
\begin{aligned}
\int_{3}^{R} \frac{d x}{\sqrt{x+1}} & =[2 \sqrt{x+1}]_{3}^{R} \\
& =2 \sqrt{R+1}-2 \sqrt{3+1} \\
& =2 \sqrt{R+1}-4
\end{aligned}
$$

Taking the limit as $R \rightarrow \infty$ we get

$$
\begin{aligned}
\int_{3}^{\infty} \frac{d x}{\sqrt{x+1}} & =\lim _{R \rightarrow \infty} \int_{3}^{R} \frac{d x}{\sqrt{x+1}} \\
& =\lim _{R \rightarrow \infty}(2 \sqrt{R+1}-4) \\
& =\infty-4 \\
& =\infty
\end{aligned}
$$

Therefore, the integral diverges.

Math 181, Exam 2, Spring 2008
 Problem 4 Solution

4. Compute the indefinite integral:

$$
\int x^{2} \ln x d x
$$

Solution: We compute the integral using Integration by Parts. Let $u=\ln x$ and $v^{\prime}=x^{2}$. Then $u^{\prime}=\frac{1}{x}$ and $v=\frac{1}{3} x^{3}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int x^{2} \ln x d x & \left.=(\ln x)\left(\frac{1}{3} x^{3}\right)-\int \frac{1}{x} \cdot \frac{1}{3} x^{3}\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{3} \int x^{2} d x \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C
\end{aligned}
$$

Math 181, Exam 2, Spring 2008
 Problem 5 Solution

5. Complete each of the following:
(a) Find the Taylor polynomial of degree 2 for the function $f(x)=\ln x$ about $x=1$.
(b) Calculate an upper bound on the error $\left|f(1.1)-T_{2}(1.1)\right|$ using the Error Bound formula. You should not simplify your answer.

Solution:

(a) The degree two Taylor polynomial for $f(x)=\ln x$ around $x=1$ has the formula:

$$
T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}
$$

The derivatives of $f(x)$ evaluated at $x=1$ are:

k	$f^{(k)}(x)$	$f^{(k)}(1)$
0	$\ln x$	$\ln 1=0$
1	$\frac{1}{x}$	$\frac{1}{1}=1$
2	$-\frac{1}{x^{2}}$	$-\frac{1}{1^{2}}=-1$

The Taylor polynomial $T_{2}(x)$ is then:

$$
\begin{aligned}
& T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2} \\
& T_{2}(x)=0+(x-1)-\frac{1}{2!}(x-1)^{2} \\
& T_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2}
\end{aligned}
$$

(b) The error bound for part (a) is given by the formula:

$$
\text { Error } \leq K \frac{|x-a|^{n+1}}{(n+1)!}
$$

where $x=1.1, a=1, n=2$, and K satisfies the inequality $\left|f^{\prime \prime \prime}(u)\right| \leq K$ for all $u \in[1,1.1]$. Since $f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$, we conclude that $\left|f^{\prime \prime \prime}(u)\right|=\left|\frac{2}{u^{3}}\right|<2$ for all $u \in[1,1.1]$. So we choose $K=2$ and the error bound is:

$$
\text { Error } \leq 2 \frac{|1.1-1|^{3}}{3!}=\frac{1}{3000}
$$

Math 181, Exam 2, Spring 2008
 Problem 6 Solution

6. A right isosceles triangular plate is vertically submerged below the surface of a fluid of weight density w. The top of the plate is at the surface of the fluid. Find the fluid force on the plate in terms of w.

Solution: We put the origin of the coordinate system at the vertex of the triangle at the water surface and define the positive y direction as being downward. The fluid force is then:

$$
F=w \int_{a}^{b} y f(y) d y
$$

where $a=0, b=3$, and $f(y)=y$ is the length of a horizontal strip of the plate at a depth of y from the water surface. The fluid force is then:

$$
\begin{aligned}
& F=w \int_{0}^{3} y(y) d y \\
& F=w \int_{0}^{3} y^{2} d y \\
& F=w\left[\frac{1}{3} y^{3}\right]_{0}^{3} \\
& F=9 w
\end{aligned}
$$

Math 181, Exam 2, Spring 2008
 Problem 7 Solution

7. Compute the indefinite integral:

$$
\int \frac{2}{x\left(x^{2}+1\right)} d x
$$

Solution: We will evaluate the integral using Partial Fraction Decomposition. First, we decompose the rational function into a sum of simpler rational functions.

$$
\frac{2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

Next, we multiply the above equation by $x\left(x^{2}+1\right)$ to get:

$$
2=A\left(x^{2}+1\right)+(B x+C) x
$$

Then we plug in three different values for x to create a system of three equations in three unknowns (A, B, C). We select $x=0, x=1$, and $x=-1$ for simplicity.

$$
\begin{aligned}
x=0: & A\left(0^{2}+1\right)+(B(0)+C)(0)=2 \Rightarrow A=2 \\
x=1: & (2)\left(1^{2}+1\right)+(B(1)+C)(1)=2 \Rightarrow B+C=-2 \\
x=-1: & (2)\left((-1)^{2}+1\right)+(B(-1)+C)(-1)=2 \Rightarrow B-C=-2
\end{aligned}
$$

The solution to this system is $A=2, B=-2$ and $C=0$. Finally, we plug these values for A, B, and C back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{2}{x\left(x^{2}+1\right)} d x & =\int\left(\frac{2}{x}+\frac{-2 x+0}{x^{2}+1}\right) d x \\
& =2 \int \frac{1}{x} d x-\int \frac{2 x}{x^{2}+1} d x
\end{aligned}
$$

To evaluate the second integral we use the u-substitution method. Let $u=x^{2}+1$. Then $d u=2 x d x$ and we get:

$$
\begin{aligned}
\int \frac{2}{x\left(x^{2}+1\right)} d x & =2 \int \frac{1}{x} d x-\int \frac{2 x}{x^{2}+1} d x \\
& =2 \int \frac{1}{x} d x-\int \frac{1}{u} d u \\
& =2 \ln |x|-\ln |u|+C \\
& =2 \ln |x|-\ln \left(x^{2}+1\right)+C
\end{aligned}
$$

