Math 181, Exam 2, Spring 2010 Problem 1a Solution

1a. Compute the improper integral: $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^3}}.$

Solution: The integral is improper because the integrand is undefined at x = 1. We evaluate the integral by turning it into a limit calculation.

$$\int_0^1 \frac{x^2 \, dx}{\sqrt{1 - x^3}} = \lim_{R \to 1^-} \int_0^R \frac{x^2 \, dx}{\sqrt{1 - x^3}}$$

To compute the integral we use the *u*-substitution method with $u = 1 - x^3$. Then $-\frac{1}{3} du = x^2 dx$ and we get:

$$\int \frac{x^2 \, dx}{\sqrt{1-x^3}} = -\frac{1}{3} \int \frac{du}{\sqrt{u}} = -\frac{2}{3}\sqrt{u} = -\frac{2}{3}\sqrt{1-x^3}$$

The definite integral from 0 to R is:

$$\int_0^R \frac{x^2 \, dx}{\sqrt{1 - x^3}} = \left[-\frac{2}{3}\sqrt{1 - x^3} \right]_0^R$$
$$= -\frac{2}{3}\sqrt{1 - R^3} + \frac{2}{3}\sqrt{1 - 0^3}$$
$$= -\frac{2}{3}\sqrt{1 - R^3} + \frac{2}{3}$$

Taking the limit as $R \to 1^-$ we get:

$$\int_{0}^{1} \frac{x^{2} dx}{\sqrt{1 - x^{3}}} = \lim_{R \to 1^{-}} \int_{0}^{R} \frac{x^{2} dx}{\sqrt{1 - x^{3}}}$$
$$= \lim_{R \to 1^{-}} \left(-\frac{2}{3}\sqrt{1 - R^{3}} + \frac{2}{3} \right)$$
$$= -\frac{2}{3}\sqrt{1 - 0^{3}} + \frac{2}{3}$$
$$= \boxed{\frac{2}{3}}$$

Math 181, Exam 2, Spring 2010 Problem 1b Solution

1b. Compute the improper integral: $\int_{0}^{+\infty} \frac{x \, dx}{x^4 + 1}$.

Solution: The integral is improper because the upper limit of integration is infinite. We evaluate the integral by turning it into a limit calculation.

$$\int_{0}^{+\infty} \frac{x \, dx}{x^4 + 1} = \lim_{R \to +\infty} \int_{0}^{R} \frac{x \, dx}{x^4 + 1}$$

To compute the integral we use the *u*-substitution method with $u = x^2$. Then $\frac{1}{2} du = x dx$ and we get:

$$\int \frac{x \, dx}{x^4 + 1} = \frac{1}{2} \int \frac{du}{u^2 + 1} = \frac{1}{2} \arctan u = \frac{1}{2} \arctan \left(x^2\right)$$

The definite integral from 0 to R is:

$$\int_0^R \frac{x \, dx}{x^4 + 1} = \left[\frac{1}{2}\arctan\left(x^2\right)\right]_0^R$$
$$= \frac{1}{2}\arctan\left(R^2\right) - \frac{1}{2}\arctan\left(0^2\right)$$
$$= \frac{1}{2}\arctan\left(R^2\right)$$

Taking the limit as $R \to +\infty$ we get:

$$\int_{0}^{+\infty} \frac{x \, dx}{x^4 + 1} = \lim_{R \to +\infty} \int_{0}^{R} \frac{x \, dx}{x^4 + 1}$$
$$= \lim_{R \to +\infty} \left[\frac{1}{2} \arctan\left(x^2\right) \right]$$
$$= \frac{1}{2} \cdot \frac{\pi}{2}$$
$$= \left[\frac{\pi}{4} \right]$$

Math 181, Exam 2, Spring 2010 Problem 2a Solution

2a. Compute the arclength of the graph of $y = 2x^{3/2}$ from x = 0 to x = 1.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + (3x^{1/2})^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + 9x} dx$$

We now use the *u*-substitution u = 1 + 9x. Then $\frac{1}{9}du = dx$, the lower limit of integration changes from 0 to 1, and the upper limit of integration changes from 1 to 10.

$$L = \int_{0}^{1} \sqrt{1 + 9x} \, dx$$

= $\frac{1}{9} \int_{1}^{10} \sqrt{u} \, du$
= $\frac{1}{9} \left[\frac{2}{3} u^{3/2} \right]_{1}^{10}$
= $\frac{1}{9} \left[\frac{2}{3} (10)^{3/2} - \frac{2}{3} (1)^{3/2} \right]$
= $\frac{2}{27} \left[10^{3/2} - 1 \right]$

Math 181, Exam 2, Spring 2010 Problem 2b Solution

2b. Compute the arclength of the graph of $y = 2x^{3/2}$ from x = 2 to x = 3.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$
$$= \int_{2}^{3} \sqrt{1 + (3x^{1/2})^{2}} dx$$
$$= \int_{2}^{3} \sqrt{1 + 9x} dx$$

We now use the *u*-substitution u = 1 + 9x. Then $\frac{1}{9}du = dx$, the lower limit of integration changes from 2 to 19, and the upper limit of integration changes from 3 to 28.

$$L = \int_{19}^{28} \sqrt{1+9x} \, dx$$

= $\frac{1}{9} \int_{19}^{28} \sqrt{u} \, du$
= $\frac{1}{9} \left[\frac{2}{3} u^{3/2} \right]_{19}^{28}$
= $\frac{1}{9} \left[\frac{2}{3} (28)^{3/2} - \frac{2}{3} (19)^{3/2} \right]$
= $\frac{2}{27} \left[28^{3/2} - 19^{3/2} \right]$

Math 181, Exam 2, Spring 2010 Problem 3a Solution

3a. Find the Maclaurin polynomial of degree 3 of the function $f(x) = \ln(x+1)$ centered at a = 0.

Solution: The 3rd degree Maclaurin polynomial $T_3(x)$ of f(x) has the formula:

$$T_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

The derivatives of f(x) and their values at x = 0 are:

k
 f^(k)(x)
 f^(k)(0)

 0
 ln(x+1)
 ln(0+1) = 0

 1

$$\frac{1}{x+1}$$
 $\frac{1}{0+1} = 1$

 2
 $-\frac{1}{(x+1)^2}$
 $-\frac{1}{(0+1)^2} = -1$

 3
 $\frac{2}{(x+1)^3}$
 $\frac{2}{(0+1)^3} = 2$

The function $T_3(x)$ is then:

$$T_{3}(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3}$$
$$T_{3}(x) = 0 + x - \frac{1}{2!}x^{2} + \frac{2}{3!}x^{3}$$
$$T_{3}(x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3}$$

Math 181, Exam 2, Spring 2010 Problem 3b Solution

3b. Find the Maclaurin polynomial of degree 3 of the function $f(x) = xe^x$ centered at a = 0.

Solution: The 3rd degree Maclaurin polynomial $T_3(x)$ of f(x) has the formula:

$$T_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

The derivatives of f(x) and their values at x = 0 are:

k
$$f^{(k)}(x)$$
 $f^{(k)}(0)$ 0 xe^x $0 \cdot e^0 = 0$ 1 $(x+1)e^x$ $(0+1)e^0 = 1$ 2 $(x+2)e^x$ $(0+2)e^0 = 2$ 3 $(x+3)e^x$ $(0+3)e^0 = 3$

The function $T_3(x)$ is then:

$$T_{3}(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3}$$
$$T_{3}(x) = 0 + x + \frac{2}{2!}x^{2} + \frac{3}{3!}x^{3}$$
$$T_{3}(x) = x + x^{2} + \frac{1}{2}x^{3}$$

Math 181, Exam 2, Spring 2010 Problem 4a Solution

4a. Find the sum of the series:

 $\sum_{n=3}^{+\infty} \frac{3^{2n-1}}{5^{3n-2}}$

$$\sum_{n=3}^{+\infty} \frac{3^{2n-1}}{5^{3n-2}} = \sum_{n=3}^{+\infty} \frac{3^{2n}3^{-1}}{5^{3n}5^{-2}} = \sum_{n=3}^{+\infty} \frac{3^{-1}}{5^{-2}} \cdot \frac{(3^2)^n}{(5^3)^n} = \sum_{n=3}^{+\infty} \frac{25}{3} \left(\frac{9}{125}\right)^n$$

This is a convergent geometric series because $|r| = \left|\frac{9}{125}\right| < 1$. We can now use the formula:

$$\sum_{n=M}^{+\infty} cr^n = r^M \cdot \frac{c}{1-r}$$

where M = 3, $c = \frac{25}{3}$, and $r = \frac{9}{125}$. The sum of the series is then:

$$\sum_{n=3}^{+\infty} \frac{25}{3} \left(\frac{9}{125}\right)^n = \left(\frac{9}{125}\right)^3 \cdot \frac{\frac{25}{3}}{1 - \frac{9}{125}} = \boxed{\frac{243}{72,500}}$$

Math 181, Exam 2, Spring 2010 Problem 4b Solution

4b. Find the sum of the series: $\sum_{n=3}^{+\infty} \frac{3^{2n+1}}{4^{3n-2}}$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$\sum_{n=3}^{+\infty} \frac{3^{2n+1}}{4^{3n-2}} = \sum_{n=3}^{+\infty} \frac{3^{2n} 3^1}{4^{3n} 4^{-2}} = \sum_{n=3}^{+\infty} \frac{3^1}{4^{-2}} \cdot \frac{(3^2)^n}{(4^3)^n} = \sum_{n=3}^{+\infty} 48 \left(\frac{9}{64}\right)^n$$

This is a convergent geometric series because $|r| = |\frac{9}{64}| < 1$. We can now use the formula:

$$\sum_{n=M}^{+\infty} cr^n = r^M \cdot \frac{c}{1-r}$$

where M = 3, c = 48, and $r = \frac{9}{64}$. The sum of the series is then:

$$\sum_{n=3}^{+\infty} 48 \left(\frac{9}{64}\right)^n = \left(\frac{9}{64}\right)^3 \cdot \frac{48}{1-\frac{9}{64}} = \boxed{\frac{2,187}{14,080}}$$

Math 181, Exam 2, Spring 2010 Problem 4c Solution

4c. Find the sum of the series: $\sum_{n=3}^{+\infty} \frac{2^{3n-1}}{3^{2n-2}}$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$\sum_{n=3}^{+\infty} \frac{2^{3n-1}}{3^{2n-2}} = \sum_{n=3}^{+\infty} \frac{2^{3n} 2^{-1}}{3^{2n} 3^{-2}} = \sum_{n=3}^{+\infty} \frac{2^{-1}}{3^{-2}} \cdot \frac{(2^3)^n}{(3^2)^n} = \sum_{n=3}^{+\infty} \frac{9}{2} \left(\frac{8}{9}\right)^n$$

This is a convergent geometric series because $|r| = |\frac{8}{9}| < 1$. We can now use the formula:

$$\sum_{n=M}^{+\infty} cr^n = r^M \cdot \frac{c}{1-r}$$

where M = 3, $c = \frac{9}{2}$, and $r = \frac{8}{9}$. The sum of the series is then:

$$\sum_{n=3}^{+\infty} \frac{9}{2} \left(\frac{8}{9}\right)^n = \left(\frac{8}{9}\right)^3 \cdot \frac{\frac{9}{2}}{1-\frac{8}{9}} = \boxed{\frac{256}{9}}$$

Math 181, Exam 2, Spring 2010 Problem 5a Solution

5a. Determine whether the following series converge or not:

$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^3}, \qquad \sum_{n=1}^{+\infty} \frac{n}{\sqrt{n^5 + n + 1}}$$

Solution: We use the Integral Test to determine whether or not the first series converges. Let $f(x) = \frac{1}{x(\ln x)^3}$. The function f(x) is decreasing for $x \ge 2$. We must now determine whether or not the following integral converges:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} \, dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{3}} \, dx$$

Let $u = \ln x$. Then $du = \frac{1}{x} dx$ and we get:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{3}} dx$$
$$= \lim_{R \to \infty} \int_{\ln 2}^{\ln R} \frac{1}{u^{3}} du$$
$$= \lim_{R \to \infty} \left[-\frac{1}{2u^{2}} \right]_{\ln 2}^{\ln R}$$
$$= \lim_{R \to \infty} \left(\frac{1}{2(\ln 2)^{2}} - \frac{1}{2(\ln R)^{2}} \right)$$
$$= \frac{1}{2(\ln 2)^{2}}$$

Since the integral converges, the series $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^3}$ converges by the Integral Test.

We use the Comparison Test to determine whether the second series converges or not. We guess that the series converges. Now let $a_n = \frac{n}{\sqrt{n^5 + n + 1}}$. We must find a series $\sum b_n$ such that (1) $0 \le a_n \le b_n$ for $n \ge 1$ and (2) $\sum b_n$ converges. We notice that:

$$0 \le \frac{n}{\sqrt{n^5 + n + 1}} \le \frac{n}{\sqrt{n^5}} = \frac{1}{n^{3/2}}$$

for all $n \ge 1$ using the argument that $\sqrt{n^5 + n + 1} > \sqrt{n^5}$ for $n \ge 1$. So we choose $b_n = \frac{1}{n^{3/2}}$. The series $\sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$ converges because it is a *p*-series with $p = \frac{3}{2} > 1$. Therefore, the series $\sum_{n=1}^{+\infty} \frac{n}{\sqrt{n^5 + n + 1}}$ converges by the Comparison Test.

Math 181, Exam 2, Spring 2010 Problem 5b Solution

5b. Determine whether the following series converge or not:

$$\sum_{n=2}^{+\infty} \frac{\ln n}{n^3}, \qquad \sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n}+10}$$

Solution: We use the Comparison Test to determine whether the first series converges or not. We guess that the series converges. Let $a_n = \frac{\ln n}{n^3}$. We must choose a series $\sum b_n$ such that (1) $0 \le a_n \le b_n$ for $n \ge 2$ and (2) $\sum b_n$ converges. We notice that:

$$0 \le \frac{\ln n}{n^3} \le \frac{n}{n^3} = \frac{1}{n^2}$$

for $n \ge 2$. So we choose $b_n = \frac{1}{n^2}$. Since the series $\sum_{n=2}^{+\infty} \frac{1}{n^2}$ converges because it is a *p*-series with p = 2 > 1, the series $\sum_{n=2}^{+\infty} \frac{\ln n}{n^3}$ converges by the Comparison Test.

The second series is alternating so we use the Leibniz Test to determine if it converges or not. Let $a_n = \frac{1}{\sqrt{n+10}}$. We know that a_n is decreasing for n > 0. Furthermore,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{n+10}} = 0$$

Therefore, the series $\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n+10}}$ converges by the Leibniz Test.

Math 181, Exam 2, Spring 2010 Problem 6a Solution

6a. Find the volume of the solid obtained by rotating the region below the graph of $y = \frac{1}{x+1}$ about the x-axis for $0 \le x < \infty$.

Solution: The volume of the solid is obtained using the Disk Method. The formula we will use is:

$$V = \pi \int_0^\infty \left(\frac{1}{x+1}\right)^2 dx$$

To compute the integral we use the *u*-substitution method letting u = x + 1, du = dx. Using the equation u = x + 1, we see that the lower limit of integration changes from 0 to 1 but the upper limit is still ∞ . The integral becomes:

$$V = \pi \int_0^\infty \left(\frac{1}{x+1}\right)^2 dx$$
$$= \pi \int_0^\infty \frac{1}{(x+1)^2} dx$$
$$= \pi \int_1^\infty \frac{1}{u^2} du$$

This is a *p*-integral with p = 2 > 1 so we know that the integral converges. In fact, its value is:

$$V = \pi \int_{1}^{\infty} \frac{1}{u^2} \, du = \pi \cdot \frac{1}{2 - 1} = \boxed{\pi}$$

Math 181, Exam 2, Spring 2010 Problem 6b Solution

6b. Find the volume of the solid obtained by rotating the region below the graph of $y = \frac{1}{x^2+1}$ about the x-axis for $0 \le x < \infty$.

Solution: The volume of the solid is obtained using the Disk Method. The formula we will use is:

$$V = \pi \int_0^\infty \left(\frac{1}{x^2 + 1}\right)^2 dx = \pi \int_0^\infty \frac{1}{(x^2 + 1)^2} dx$$

To compute the integral we first turn it into a limit calculation.

$$V = \pi \int_0^\infty \frac{1}{(x^2 + 1)^2} \, dx = \lim_{R \to \infty} \pi \int_0^\infty \frac{1}{(x^2 + 1)^2} \, dx$$

We use the trigonometric substitution method to evaluate the integral letting $x = \tan \theta$ and $dx = \sec^2 \theta \, d\theta$. The indefinite integral becomes:

$$\int \frac{1}{(x^2+1)^2} dx = \int \frac{1}{(\tan^2 \theta + 1)^2} \left(\sec^2 \theta \, d\theta\right)$$
$$= \int \frac{1}{(\sec^2 \theta)^2} \left(\sec^2 \theta \, d\theta\right)$$
$$= \int \cos^2 \theta \, d\theta$$
$$= \frac{1}{2}\theta + \frac{1}{2}\sin \theta \cos \theta$$

Using the fact that $x = \tan \theta$ we find that $\theta = \arctan x$, $\sin \theta = \frac{x}{\sqrt{x^2+1}}$, and $\cos \theta = \frac{1}{\sqrt{x^2+1}}$ either using a triangle or a few Pythagorean identities. The indefinite integral in terms of x is:

$$\int \frac{1}{(x^2+1)^2} dx = \frac{1}{2}\theta + \frac{1}{2}\sin\theta\cos\theta$$

= $\frac{1}{2}\arctan x + \frac{1}{2}\left(\frac{x}{\sqrt{x^2+1}}\right)\left(\frac{1}{\sqrt{x^2+1}}\right)$
= $\frac{1}{2}\arctan x + \frac{x}{2(x^2+1)}$

The definite integral from 0 to R is:

$$\int_0^R \frac{1}{(x^2+1)^2} dx = \left[\frac{1}{2}\arctan x + \frac{x}{2(x^2+1)}\right]_0^R$$
$$= \left[\frac{1}{2}\arctan R + \frac{R}{2(R^2+1)}\right] - \left[\frac{1}{2}\arctan 0 + \frac{0}{2(0^2+1)}\right]$$
$$= \frac{1}{2}\arctan R + \frac{R}{2(R^2+1)}$$

The volume is then:

$$V = \pi \int_{0}^{\infty} \frac{1}{(x^{2}+1)^{2}} dx$$

= $\lim_{R \to \infty} \pi \int_{0}^{\infty} \frac{1}{(x^{2}+1)^{2}} dx$
= $\lim_{R \to \infty} \pi \left[\frac{1}{2} \arctan R + \frac{R}{2(R^{2}+1)} \right]$
= $\frac{\pi}{2} \lim_{R \to \infty} \arctan R + \frac{\pi}{2} \lim_{R \to \infty} \frac{R}{R^{2}+1}$
 $\stackrel{\text{L'H}}{=} \frac{\pi}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \lim_{R \to \infty} \frac{(R)'}{(R^{2}+1)'}$
= $\frac{\pi}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \lim_{R \to \infty} \frac{1}{2R}$
= $\frac{\pi}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \cdot 0$
= $\left[\frac{\pi^{2}}{4} \right]$