Math 181, Exam 2, Spring 2010
 Problem 1a Solution

1a. Compute the improper integral: $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{3}}}$.
Solution: The integral is improper because the integrand is undefined at $x=1$. We evaluate the integral by turning it into a limit calculation.

$$
\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{3}}}=\lim _{R \rightarrow 1^{-}} \int_{0}^{R} \frac{x^{2} d x}{\sqrt{1-x^{3}}}
$$

To compute the integral we use the u-substitution method with $u=1-x^{3}$. Then $-\frac{1}{3} d u=$ $x^{2} d x$ and we get:

$$
\int \frac{x^{2} d x}{\sqrt{1-x^{3}}}=-\frac{1}{3} \int \frac{d u}{\sqrt{u}}=-\frac{2}{3} \sqrt{u}=-\frac{2}{3} \sqrt{1-x^{3}}
$$

The definite integral from 0 to R is:

$$
\begin{aligned}
\int_{0}^{R} \frac{x^{2} d x}{\sqrt{1-x^{3}}} & =\left[-\frac{2}{3} \sqrt{1-x^{3}}\right]_{0}^{R} \\
& =-\frac{2}{3} \sqrt{1-R^{3}}+\frac{2}{3} \sqrt{1-0^{3}} \\
& =-\frac{2}{3} \sqrt{1-R^{3}}+\frac{2}{3}
\end{aligned}
$$

Taking the limit as $R \rightarrow 1^{-}$we get:

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{3}}} & =\lim _{R \rightarrow 1^{-}} \int_{0}^{R} \frac{x^{2} d x}{\sqrt{1-x^{3}}} \\
& =\lim _{R \rightarrow 1^{-}}\left(-\frac{2}{3} \sqrt{1-R^{3}}+\frac{2}{3}\right) \\
& =-\frac{2}{3} \sqrt{1-0^{3}}+\frac{2}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 1b Solution

1b. Compute the improper integral: $\int_{0}^{+\infty} \frac{x d x}{x^{4}+1}$.
Solution: The integral is improper because the upper limit of integration is infinite. We evaluate the integral by turning it into a limit calculation.

$$
\int_{0}^{+\infty} \frac{x d x}{x^{4}+1}=\lim _{R \rightarrow+\infty} \int_{0}^{R} \frac{x d x}{x^{4}+1}
$$

To compute the integral we use the u-substitution method with $u=x^{2}$. Then $\frac{1}{2} d u=x d x$ and we get:

$$
\int \frac{x d x}{x^{4}+1}=\frac{1}{2} \int \frac{d u}{u^{2}+1}=\frac{1}{2} \arctan u=\frac{1}{2} \arctan \left(x^{2}\right)
$$

The definite integral from 0 to R is:

$$
\begin{aligned}
\int_{0}^{R} \frac{x d x}{x^{4}+1} & =\left[\frac{1}{2} \arctan \left(x^{2}\right)\right]_{0}^{R} \\
& =\frac{1}{2} \arctan \left(R^{2}\right)-\frac{1}{2} \arctan \left(0^{2}\right) \\
& =\frac{1}{2} \arctan \left(R^{2}\right)
\end{aligned}
$$

Taking the limit as $R \rightarrow+\infty$ we get:

$$
\begin{aligned}
\int_{0}^{+\infty} \frac{x d x}{x^{4}+1} & =\lim _{R \rightarrow+\infty} \int_{0}^{R} \frac{x d x}{x^{4}+1} \\
& =\lim _{R \rightarrow+\infty}\left[\frac{1}{2} \arctan \left(x^{2}\right)\right] \\
& =\frac{1}{2} \cdot \frac{\pi}{2} \\
& =\frac{\pi}{4}
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 2a Solution

2a. Compute the arclength of the graph of $y=2 x^{3 / 2}$ from $x=0$ to $x=1$.
Solution: The arclength is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\left(3 x^{1 / 2}\right)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+9 x} d x
\end{aligned}
$$

We now use the u-substitution $u=1+9 x$. Then $\frac{1}{9} d u=d x$, the lower limit of integration changes from 0 to 1 , and the upper limit of integration changes from 1 to 10 .

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+9 x} d x \\
& =\frac{1}{9} \int_{1}^{10} \sqrt{u} d u \\
& =\frac{1}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{10} \\
& =\frac{1}{9}\left[\frac{2}{3}(10)^{3 / 2}-\frac{2}{3}(1)^{3 / 2}\right] \\
& =\frac{2}{27}\left[10^{3 / 2}-1\right]
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 2b Solution

2b. Compute the arclength of the graph of $y=2 x^{3 / 2}$ from $x=2$ to $x=3$.
Solution: The arclength is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =\int_{2}^{3} \sqrt{1+\left(3 x^{1 / 2}\right)^{2}} d x \\
& =\int_{2}^{3} \sqrt{1+9 x} d x
\end{aligned}
$$

We now use the u-substitution $u=1+9 x$. Then $\frac{1}{9} d u=d x$, the lower limit of integration changes from 2 to 19, and the upper limit of integration changes from 3 to 28 .

$$
\begin{aligned}
L & =\int_{19}^{28} \sqrt{1+9 x} d x \\
& =\frac{1}{9} \int_{19}^{28} \sqrt{u} d u \\
& =\frac{1}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{19}^{28} \\
& =\frac{1}{9}\left[\frac{2}{3}(28)^{3 / 2}-\frac{2}{3}(19)^{3 / 2}\right] \\
& =\frac{2}{27}\left[28^{3 / 2}-19^{3 / 2}\right]
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 3a Solution

3a. Find the Maclaurin polynomial of degree 3 of the function $f(x)=\ln (x+1)$ centered at $a=0$.

Solution: The 3rd degree Maclaurin polynomial $T_{3}(x)$ of $f(x)$ has the formula:

$$
T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}
$$

The derivatives of $f(x)$ and their values at $x=0$ are:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$\ln (x+1)$	$\ln (0+1)=0$
1	$\frac{1}{x+1}$	$\frac{1}{0+1}=1$
2	$-\frac{1}{(x+1)^{2}}$	$-\frac{1}{(0+1)^{2}}=-1$
3	$\frac{2}{(x+1)^{3}}$	$\frac{2}{(0+1)^{3}}=2$

The function $T_{3}(x)$ is then:

$$
\begin{aligned}
& T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \\
& T_{3}(x)=0+x-\frac{1}{2!} x^{2}+\frac{2}{3!} x^{3} \\
& T_{3}(x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 3b Solution

3b. Find the Maclaurin polynomial of degree 3 of the function $f(x)=x e^{x}$ centered at $a=0$.

Solution: The 3rd degree Maclaurin polynomial $T_{3}(x)$ of $f(x)$ has the formula:

$$
T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}
$$

The derivatives of $f(x)$ and their values at $x=0$ are:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$x e^{x}$	$0 \cdot e^{0}=0$
1	$(x+1) e^{x}$	$(0+1) e^{0}=1$
2	$(x+2) e^{x}$	$(0+2) e^{0}=2$
3	$(x+3) e^{x}$	$(0+3) e^{0}=3$

The function $T_{3}(x)$ is then:

$$
\begin{aligned}
& T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \\
& T_{3}(x)=0+x+\frac{2}{2!} x^{2}+\frac{3}{3!} x^{3} \\
& T_{3}(x)=x+x^{2}+\frac{1}{2} x^{3}
\end{aligned}
$$

Math 181, Exam 2, Spring 2010
 Problem 4a Solution

4a. Find the sum of the series:

$$
\sum_{n=3}^{+\infty} \frac{3^{2 n-1}}{5^{3 n-2}}
$$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=3}^{+\infty} \frac{3^{2 n-1}}{5^{3 n-2}}=\sum_{n=3}^{+\infty} \frac{3^{2 n} 3^{-1}}{5^{3 n} 5^{-2}}=\sum_{n=3}^{+\infty} \frac{3^{-1}}{5^{-2}} \cdot \frac{\left(3^{2}\right)^{n}}{\left(5^{3}\right)^{n}}=\sum_{n=3}^{+\infty} \frac{25}{3}\left(\frac{9}{125}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{9}{125}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=3, c=\frac{25}{3}$, and $r=\frac{9}{125}$. The sum of the series is then:

$$
\sum_{n=3}^{+\infty} \frac{25}{3}\left(\frac{9}{125}\right)^{n}=\left(\frac{9}{125}\right)^{3} \cdot \frac{\frac{25}{3}}{1-\frac{9}{125}}=\frac{243}{72,500}
$$

Math 181, Exam 2, Spring 2010
 Problem 4b Solution

4b. Find the sum of the series: $\sum_{n=3}^{+\infty} \frac{3^{2 n+1}}{4^{3 n-2}}$
Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=3}^{+\infty} \frac{3^{2 n+1}}{4^{3 n-2}}=\sum_{n=3}^{+\infty} \frac{3^{2 n} 3^{1}}{4^{3 n} 4^{-2}}=\sum_{n=3}^{+\infty} \frac{3^{1}}{4^{-2}} \cdot \frac{\left(3^{2}\right)^{n}}{\left(4^{3}\right)^{n}}=\sum_{n=3}^{+\infty} 48\left(\frac{9}{64}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{9}{64}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=3, c=48$, and $r=\frac{9}{64}$. The sum of the series is then:

$$
\sum_{n=3}^{+\infty} 48\left(\frac{9}{64}\right)^{n}=\left(\frac{9}{64}\right)^{3} \cdot \frac{48}{1-\frac{9}{64}}=\frac{2,187}{14,080}
$$

Math 181, Exam 2, Spring 2010
 Problem 4c Solution

4c. Find the sum of the series: $\sum_{n=3}^{+\infty} \frac{2^{3 n-1}}{3^{2 n-2}}$
Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$
\sum_{n=3}^{+\infty} \frac{2^{3 n-1}}{3^{2 n-2}}=\sum_{n=3}^{+\infty} \frac{2^{3 n} 2^{-1}}{3^{2 n} 3^{-2}}=\sum_{n=3}^{+\infty} \frac{2^{-1}}{3^{-2}} \cdot \frac{\left(2^{3}\right)^{n}}{\left(3^{2}\right)^{n}}=\sum_{n=3}^{+\infty} \frac{9}{2}\left(\frac{8}{9}\right)^{n}
$$

This is a convergent geometric series because $|r|=\left|\frac{8}{9}\right|<1$. We can now use the formula:

$$
\sum_{n=M}^{+\infty} c r^{n}=r^{M} \cdot \frac{c}{1-r}
$$

where $M=3, c=\frac{9}{2}$, and $r=\frac{8}{9}$. The sum of the series is then:

$$
\sum_{n=3}^{+\infty} \frac{9}{2}\left(\frac{8}{9}\right)^{n}=\left(\frac{8}{9}\right)^{3} \cdot \frac{\frac{9}{2}}{1-\frac{8}{9}}=\frac{256}{9}
$$

Math 181, Exam 2, Spring 2010
 Problem 5a Solution

5a. Determine whether the following series converge or not:

$$
\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^{3}}, \quad \sum_{n=1}^{+\infty} \frac{n}{\sqrt{n^{5}+n+1}}
$$

Solution: We use the Integral Test to determine whether or not the first series converges. Let $f(x)=\frac{1}{x(\ln x)^{3}}$. The function $f(x)$ is decreasing for $x \geq 2$. We must now determine whether or not the following integral converges:

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} d x=\lim _{R \rightarrow \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{3}} d x
$$

Let $u=\ln x$. Then $d u=\frac{1}{x} d x$ and we get:

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} d x & =\lim _{R \rightarrow \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{3}} d x \\
& =\lim _{R \rightarrow \infty} \int_{\ln 2}^{\ln R} \frac{1}{u^{3}} d u \\
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2 u^{2}}\right]_{\ln 2}^{\ln R} \\
& =\lim _{R \rightarrow \infty}\left(\frac{1}{2(\ln 2)^{2}}-\frac{1}{2(\ln R)^{2}}\right) \\
& =\frac{1}{2(\ln 2)^{2}}
\end{aligned}
$$

Since the integral converges, the series $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^{3}}$ converges by the Integral Test.
We use the Comparison Test to determine whether the second series converges or not. We guess that the series converges. Now let $a_{n}=\frac{n}{\sqrt{n^{5}+n+1}}$. We must find a series $\sum b_{n}$ such that (1) $0 \leq a_{n} \leq b_{n}$ for $n \geq 1$ and (2) $\sum b_{n}$ converges. We notice that:

$$
0 \leq \frac{n}{\sqrt{n^{5}+n+1}} \leq \frac{n}{\sqrt{n^{5}}}=\frac{1}{n^{3 / 2}}
$$

for all $n \geq 1$ using the argument that $\sqrt{n^{5}+n+1}>\sqrt{n^{5}}$ for $n \geq 1$. So we choose $b_{n}=\frac{1}{n^{3 / 2}}$. The series $\sum_{n=1}^{+\infty} \frac{1}{n^{3 / 2}}$ converges because it is a p-series with $p=\frac{3}{2}>1$. Therefore, the series $\sum_{n=1}^{+\infty} \frac{n}{\sqrt{n^{5}+n+1}}$ converges by the Comparison Test.

Math 181, Exam 2, Spring 2010
 Problem 5b Solution

5b. Determine whether the following series converge or not:

$$
\sum_{n=2}^{+\infty} \frac{\ln n}{n^{3}}, \quad \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{\sqrt{n}+10}
$$

Solution: We use the Comparison Test to determine whether the first series converges or not. We guess that the series converges. Let $a_{n}=\frac{\ln n}{n^{3}}$. We must choose a series $\sum b_{n}$ such that (1) $0 \leq a_{n} \leq b_{n}$ for $n \geq 2$ and (2) $\sum b_{n}$ converges. We notice that:

$$
0 \leq \frac{\ln n}{n^{3}} \leq \frac{n}{n^{3}}=\frac{1}{n^{2}}
$$

for $n \geq 2$. So we choose $b_{n}=\frac{1}{n^{2}}$. Since the series $\sum_{n=2}^{+\infty} \frac{1}{n^{2}}$ converges because it is a p-series with $p=2>1$, the series $\sum_{n=2}^{+\infty} \frac{\ln n}{n^{3}}$ converges by the Comparison Test.

The second series is alternating so we use the Leibniz Test to determine if it converges or not. Let $a_{n}=\frac{1}{\sqrt{n}+10}$. We know that a_{n} is decreasing for $n>0$. Furthermore,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+10}=0
$$

Therefore, the series $\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{\sqrt{n}+10}$ converges by the Leibniz Test.

Math 181, Exam 2, Spring 2010
 Problem 6a Solution

6a. Find the volume of the solid obtained by rotating the region below the graph of $y=\frac{1}{x+1}$ about the x-axis for $0 \leq x<\infty$.

Solution: The volume of the solid is obtained using the Disk Method. The formula we will use is:

$$
V=\pi \int_{0}^{\infty}\left(\frac{1}{x+1}\right)^{2} d x
$$

To compute the integral we use the u-substitution method letting $u=x+1, d u=d x$. Using the equation $u=x+1$, we see that the lower limit of integration changes from 0 to 1 but the upper limit is still ∞. The integral becomes:

$$
\begin{aligned}
V & =\pi \int_{0}^{\infty}\left(\frac{1}{x+1}\right)^{2} d x \\
& =\pi \int_{0}^{\infty} \frac{1}{(x+1)^{2}} d x \\
& =\pi \int_{1}^{\infty} \frac{1}{u^{2}} d u
\end{aligned}
$$

This is a p-integral with $p=2>1$ so we know that the integral converges. In fact, its value is:

$$
V=\pi \int_{1}^{\infty} \frac{1}{u^{2}} d u=\pi \cdot \frac{1}{2-1}=\pi
$$

Math 181, Exam 2, Spring 2010
 Problem 6b Solution

6b. Find the volume of the solid obtained by rotating the region below the graph of $y=\frac{1}{x^{2}+1}$ about the x-axis for $0 \leq x<\infty$.

Solution: The volume of the solid is obtained using the Disk Method. The formula we will use is:

$$
V=\pi \int_{0}^{\infty}\left(\frac{1}{x^{2}+1}\right)^{2} d x=\pi \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

To compute the integral we first turn it into a limit calculation.

$$
V=\pi \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x=\lim _{R \rightarrow \infty} \pi \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

We use the trigonometric substitution method to evaluate the integral letting $x=\tan \theta$ and $d x=\sec ^{2} \theta d \theta$. The indefinite integral becomes:

$$
\begin{aligned}
\int \frac{1}{\left(x^{2}+1\right)^{2}} d x & =\int \frac{1}{\left(\tan ^{2} \theta+1\right)^{2}}\left(\sec ^{2} \theta d \theta\right) \\
& =\int \frac{1}{\left(\sec ^{2} \theta\right)^{2}}\left(\sec ^{2} \theta d \theta\right) \\
& =\int \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta
\end{aligned}
$$

Using the fact that $x=\tan \theta$ we find that $\theta=\arctan x, \sin \theta=\frac{x}{\sqrt{x^{2}+1}}$, and $\cos \theta=\frac{1}{\sqrt{x^{2}+1}}$ either using a triangle or a few Pythagorean identities. The indefinite integral in terms of x is:

$$
\begin{aligned}
\int \frac{1}{\left(x^{2}+1\right)^{2}} d x & =\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta \\
& =\frac{1}{2} \arctan x+\frac{1}{2}\left(\frac{x}{\sqrt{x^{2}+1}}\right)\left(\frac{1}{\sqrt{x^{2}+1}}\right) \\
& =\frac{1}{2} \arctan x+\frac{x}{2\left(x^{2}+1\right)}
\end{aligned}
$$

The definite integral from 0 to R is:

$$
\begin{aligned}
\int_{0}^{R} \frac{1}{\left(x^{2}+1\right)^{2}} d x & =\left[\frac{1}{2} \arctan x+\frac{x}{2\left(x^{2}+1\right)}\right]_{0}^{R} \\
& =\left[\frac{1}{2} \arctan R+\frac{R}{2\left(R^{2}+1\right)}\right]-\left[\frac{1}{2} \arctan 0+\frac{0}{2\left(0^{2}+1\right)}\right] \\
& =\frac{1}{2} \arctan R+\frac{R}{2\left(R^{2}+1\right)}
\end{aligned}
$$

The volume is then:

$$
\begin{aligned}
V & =\pi \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x \\
& =\lim _{R \rightarrow \infty} \pi \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x \\
& =\lim _{R \rightarrow \infty} \pi\left[\frac{1}{2} \arctan R+\frac{R}{2\left(R^{2}+1\right)}\right] \\
& =\frac{\pi}{2} \lim _{R \rightarrow \infty} \arctan R+\frac{\pi}{2} \lim _{R \rightarrow \infty} \frac{R}{R^{2}+1} \\
& \stackrel{\text {LI}^{\prime} \mathrm{H}}{=} \frac{\pi}{2} \cdot \frac{\pi}{2}+\frac{\pi}{2} \lim _{R \rightarrow \infty} \frac{(R)^{\prime}}{\left(R^{2}+1\right)^{\prime}} \\
& =\frac{\pi}{2} \cdot \frac{\pi}{2}+\frac{\pi}{2} \lim _{R \rightarrow \infty} \frac{1}{2 R} \\
& =\frac{\pi}{2} \cdot \frac{\pi}{2}+\frac{\pi}{2} \cdot 0 \\
& =\frac{\pi^{2}}{4}
\end{aligned}
$$

