
Math 181, Exam 2, Study Guide 2

Problem 1 Solution

1. Use the trapezoid rule with n = 2 to estimate the arc-length of the curve y = sin x between
x = 0 and x = π.

Solution: The arclength is:

L =

∫

b

a

√

1 +

(

dy

dx

)

2

dx

=

∫

π

0

√

1 + (cos x)2 dx

=

∫

π

0

√

1 + cos2 x dx

We now use the trapezoid rule with n = 2 to estimate the value of the integral. The formula
we will use is:

T2 =
∆x

2

[

f(0) + 2f
(π

2

)

+ f(π)
]

where f(x) =
√

1 + cos2 x and the value of ∆x is:

∆x =
b − a

n
=

π − 0

2
=

π

2

The value of T2 is then:

T2 =
∆x

2

[

f(0) + 2f
(π

2

)

+ f(π)
]

=
π

2

2

[

√

1 + cos2 0 + 2

√

1 + cos2
π

2
+
√

1 + cos2 π

]

=
π

4

[

√

1 + 1 + 2
√

1 + 0 +
√

1 + 1
]

=
π

4

(

2 +
√

2
)
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Math 181, Exam 2, Study Guide 2
Problem 2 Solution

2.

(a) Let R be the region between y = 1
1+x2 and the x-axis with x ≥ 0. Does R have finite

area? If so, what is the area?

(b) Let S be the solid obtained by revolving R around the y-axis. Does S have finite
volume? If so, what is the volume?

Solution:

(a) The area of R is given by the improper integral:

Area =

∫ +∞

0

1

x2 + 1
dx

We evaluate the integral by turning it into a limit calculation.∫ +∞

0

dx

x2 + 1
= lim

R→+∞

∫ R

0

dx

x2 + 1

The integral has a simple antiderivative so its value is:∫ R

0

dx

x2 + 1
=
[

arctanx
]R
0

= arctanR− arctan 0

= arctanR

We now take the limit of the above function as R→ +∞.∫ +∞

0

dx

x2 + 1
= lim

R→+∞

∫ R

0

dx

x2 + 1

= lim
R→+∞

arctanR

=
π

2

Thus, the area is finite and its value is
π

2
.

(b) The volume of S is obtained by using the Shell Method. The formula is

V =

∫ ∞

0

2πx · 1

x2 + 1
dx

1



To compute the integral we first turn it into a limit calculation.

V = π lim
b→∞

∫ b

0

2x

x2 + 1
dx

The value of the integral is∫ b

0

2x

x2 + 1
dx =

[
ln |x2 + 1|

]b
0

= ln(b2 + 1)

The volume is then
V = lim

b→∞
, ln(b2 + 1) =∞

That is, the volume is not finite.
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Problem 3 Solution

3. Evaluate the following integrals:

(a)

∫

π

−π

sin4 x dx

(b)

∫

1

0

dx

2x2 + 5x + 2

(c)

∫

1

0

dx

2x2 + 4x + 3

(d)

∫ ∞

0

x2e−x dx

Solution:

(a) We solve this integral using a reduction formula.

∫

sinn x dx = −
1

n
sinn−1 x cos x +

n − 1

n

∫

sinn−2 x dx

Letting n = 4 we get:
∫

sin4 x dx = −
1

4
sin3 x cos x +

3

4

∫

sin2 x dx

= −

1

4
sin3 x cos x +

3

4

∫

1

2
[1 − cos(2x)] dx

= −
1

4
sin3 x cos x +

3

8

∫

[1 − cos(2x)] dx

= −

1

4
sin3 x cos x +

3

8
x −

3

16
sin(2x)

To evaluate

∫

sin2 x dx we used the double angle identity cos(2x) = 1 − 2 sin2 x.

We now solve the definite integral.
∫

π

−π

sin4 x dx =

[

−
1

4
sin3 x cos x +

3

8
x −

3

16
sin(2x)

]π

−π

=

[

−
1

4
sin3 π cos π +

3

8
π −

3

16
sin(2π)

]

−

[

−
1

4
sin3(−π) cos(−π) +

3

8
(−π) −

3

16
sin(−2π)

]

=

[

0 +
3

8
π − 0

]

−

[

0 −
3

8
π − 0

]

=
3

4
π

1



(b) We will evaluate the integral using Partial Fraction Decomposition. First, we factor the
denominator and then decompose the rational function into a sum of simpler rational
functions.

1

2x2 + 5x + 2
=

1

(2x + 1)(x + 2)
=

A

2x + 1
+

B

x + 2

Next, we multiply the above equation by (2x + 1)(x + 2) to get:

1 = A(x + 2) + B(2x + 1)

Then we plug in two different values for x to create a system of two equations in two

unknowns (A, B). We select x = −
1

2
and x = −2 for simplicity.

x = −
1

2
: A

(

−
1

2
+ 2

)

+ B

(

2

(

−
1

2

)

+ 1

)

= 1 ⇒ A =
2

3

x = −2 : A(−2 + 2) + B(2(−2) + 1) = 1 ⇒ B = −

1

3

Finally, we plug these values for A and B back into the decomposition and integrate.

∫

1

2x2 + 5x + 2
dx =

∫
(

A

2x + 1
+

B

x + 2

)

dx

=

∫
(

2

3

2x + 1
+

−
1

3

x + 2

)

dx

=
1

3
ln |2x + 1| −

1

3
ln |x + 2|

We now solve the definite integral.

∫

1

0

dx

2x2 + 5x + 2
=

[

1

3
ln |2x + 1| −

1

3
ln |x + 2|

]1

0

=

[

1

3
ln |2(1) + 1| −

1

3
ln |1 + 2|

]

−

[

1

3
ln |2(0) + 1| −

1

3
ln |0 + 2|

]

=
1

3
ln 3 −

1

3
ln 3 −

1

3
ln 1 +

1

3
ln 2

=
1

3
ln 2

(c) We begin by completing the square in the denominator.

∫

dx

2x2 + 4x + 3
=

∫

dx

2(x + 1)2 + 1
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We then evaluate the integral using the u-substitution method. Let u =
√

2(x + 1).

Then du =
√

2 dx ⇒

1
√

2
du = dx and we get:

∫

dx

2x2 + 4x + 3
=

∫

dx

2(x + 1)2 + 1

=

∫

dx

[
√

2(x + 1)]2 + 1

=

∫ 1√
2
du

u2 + 1

=
1
√

2

∫

du

u2 + 1

=
1
√

2
arctan u + C

=
1
√

2
arctan

[√

2(x + 1)
]

We now solve the definite integral.
∫

1

0

dx

2x2 + 4x + 3
=

[

1
√

2
arctan

[√

2(x + 1)
]

]

1

0

=
1
√

2
arctan

[√

2(1 + 1)
]

−
1
√

2
arctan

[√

2(0 + 1)
]

=
1
√

2

[

arctan
(

2
√

2
)

− arctan
(√

2
)]

(d) We evaluate the integral using Integration by Parts. Let u = x2 and v′ = e−x. Then
u′ = 2x and v = −e−x. Using the Integration by Parts formula:

∫

uv′ dx = uv −

∫

u′v dx

we get:
∫

x2e−x dx = −x2e−x
−

∫

2x
(

−e−x
)

dx

= −x2e−x + 2

∫

xe−x dx

A second Integration by Parts must be performed. Let u = x and v′ = e−x. Then
u′ = 1 and v = −e−x. Using the Integration by Parts formula again we get:

∫

x2e−x dx = −x2e−x + 2

[

−xe−x
−

∫

(

−e−x
)

dx

]

= −x2e−x
− 2xe−x + 2

∫

e−x dx

= −x2e−x
− 2xe−x

− 2e−x

3



We now solve the definite integral. We recognize that it is an improper integral so we
turn it into a limit and evaluate.

∫ ∞

0

x2e−x dx = lim
b→∞

∫

b

0

x2e−x dx

= lim
b→∞

[

−x2e−x
− 2xe−x

− 2e−x
]b

0

= lim
b→∞

[

−b2e−b
− 2be−b

− 2e−b + 2
]

= lim
b→∞

[

−

b2

eb
−

2b

eb
−

2

eb
+ 2

]

= −0 − 0 − 0 + 2

= 2

When computing the limits above, we used the fact that:

lim
x→0

xn

ex
= 0

by repeated application of L’Hopital’s Rule.

4



Math 181, Exam 2, Study Guide 2

Problem 4 Solution

4. Use a Taylor polynomial for y = ex to calculate e to two decimal places. Explain (using
the remainder formula) why you have used sufficiently many terms.

Solution: We will find the nth degree Maclaurin polynomial of f(x) = ex so that the error
|Tn(1)− f(1)| = |Tn(1)− e| is less than 10−2. That is, we must find a value of n that ensures
that the Error Bound satisfies the inequality:

Error = |Tn(1) − e| ≤ K
|x − a|n+1

(n + 1)!
< 10−2

where x = 1, a = 0, and K satisfies the inequality |f (n+1)(u)| ≤ K for all u ∈ [0, 1]. Since
|f (n+1)(u)| = eu < 3 for all u ∈ [0, 1] we choose K = 3. We now want to satisfy the inequality:

Error = |Tn(1) − e| ≤ 3
|1 − 0|n+1

(n + 1)!
< 10−2

Error = |Tn(1) − e| ≤
3

(n + 1)!
< 10−2 =

1

100

We will find an appropriate value of n by a trial and error process.

n
3

(n + 1)!

1
3

2!
=

3

2

2
3

3!
=

1

6

3
3

4!
=

1

8

4
3

5!
=

1

40

5
3

6!
=

1

240
<

1

100

Therefore, we choose n = 5 . The Maclaurin polynomial T5(x) for f(x) = ex is:

T5(x) = 1 + x +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5

Evaluating at x = 1 we get:

T5(1) = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!

T5(1) =
163

60
≈ 2.716̄

1



Math 181, Exam 2, Study Guide 2

Problem 5 Solution

5. Let S be the surface obtained by revolving the curve y = sin x between x = 0 and x = π

around the x-axis. What is the surface area of S?

Solution: The surface area formula is:

Surface Area = 2π

∫

b

a

f(x)
√

1 + f ′(x)2 dx

Using a = 0, b = π, f(x) = sin x, and f ′(x) = cos x we get:

Surface Area = 2π

∫

π

0

sin x

√

1 + (cos x)2
dx

= 2π

∫

π

0

sin x
√

1 + cos2 x dx

To evaluate the integral we use the u-substitution u = cos x. Then −du = sin x dx, the lower
limit of integration changes from 0 to 1, and the upper limit changes from π to −1. Making
these substitutions we get:

Surface Area = −2π

∫ −1

1

√

1 + u2 du

= 2π

∫

1

−1

√

1 + u2 du

= 4π

∫

1

0

√

1 + u2 du

where, in the last step, we used the fact that
√

1 + u2 is symmetric with respect to the y-axis.
To evaluate this integral we’ll use the trigonometric substitution u = tan θ and du = sec2 dθ.
We get:

∫

√

1 + u2 du =

∫

√

1 + tan2 θ sec2 θ dθ

=

∫

√

sec2 θ sec2 θ dθ

=

∫

sec3 θ dθ

=
1

2
tan θ sec θ +

1

2
ln | sec θ + tan θ|

where the integral of sec3 θ is determined via a reduction formula. Using the fact that
u = tan θ we find that sec θ =

√

1 + u2 using a Pythagorean identity. Therefore,
∫

√

1 + u2 du =
1

2
u
√

1 + u2 + ln
∣

∣

∣

√

1 + u2 + u

∣

∣

∣

1



The surface area is then:

Surface Area = 4π

∫

1

0

√

1 + u2 du

= 4π

[

1

2
u
√

1 + u2 + ln
∣

∣

∣

√

1 + u2 + u

∣

∣

∣

]

1

0

= 4π

[

1

2
(1)

√

1 + 12 + ln
∣

∣

∣

√

1 + 12 + 1
∣

∣

∣

]

− 4π

[

1

2
(0)

√

1 + 02 + ln
∣

∣

∣

√

1 + 02 + 0
∣

∣

∣

]

= 4π

[√

2

2
+ ln 2

]

− 4π
[

0 + ln 1
]

= 2π
√

2 + 2π ln 2

2
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Problem 6 Solution

6.

(a) Estimate ln 3

2
using the degree two Taylor polynomial for y = ln x around x = 1.

(b) Estimate ln 3

2
using the Midpoint rule with n = 2 for the integral

∫

3/2

1

dx

x
.

(c) Calculate the error bounds for the two estimates. Does this tell you which is closer to
the exact answer?

Solution:

(a) The degree two Taylor polynomial for f(x) = ln x around x = 1 has the formula:

T2(x) = f(1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2

The derivatives of f(x) evaluated at x = 1 are:

k f (k)(x) f (k)(1)

0 ln x ln 1 = 0

1
1

x

1

1
= 1

2 −
1

x2
−

1

12
= −1

The Taylor polynomial T2(x) is then:

T2(x) = f(1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2

T2(x) = 0 + (x − 1) −
1

2!
(x − 1)2

T2(x) = (x − 1) −
1

2
(x − 1)2

We will now estimate ln 3

2
using T2(

3

2
).

ln
3

2
≈ T2

(

3

2

)

≈

(

3

2
− 1

)

−

1

2

(

3

2
− 1

)

2

≈
3

8

1



(b) The value of ∆x in the Midpoint rule is:

∆x =
b − a

n
=

3

2
− 1

2
=

1

4

The Midpoint estimate M2 is:

M2 = ∆x

[

f

(

9

8

)

+ f

(

11

8

)]

=
1

4

[

1
9

8

+
1
11

8

]

=
1

4

[

8

9
+

8

11

]

=
40

99

(c) The error bound for part (a) is given by the formula:

Error ≤ K
|x − a|n+1

(n + 1)!

where x = 3

2
, a = 1, n = 2, and K satisfies the inequality |f ′′′(u)| ≤ K for all u ∈ [1, 3

2
].

One can show that f ′′′(x) = 2

x3 . We conclude that |f ′′′(u)| = |
2

u3 | < 2 for all u ∈ [1, 3

2
].

So we choose K = 2 and the error bound is:

Error ≤ 2
|
3

2
− 1|3

3!
=

1

24

The error bound for part (b) is given by the formula:

Error(Mn) ≤
K(b − a)3

24n2

where a = 1, b = 3

2
, n = 2, and K satisfies the inequality |( 1

x
)′′| ≤ K for all x ∈ [1, 3

2
].

We conclude that |( 1

x
)′′| = |

2

x3 | ≤ 2 for all x ∈ [1, 3

2
]. So we choose K = 2 and the error

bound is:

Error(M2) ≤
2 · (3

2
− 1)3

24(2)2
=

1

384

We cannot tell which of 3

8
and 40

99
is closer to the exact answer. All we know is that

both errors are smaller than 1

24
.
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Problem 7 Solution

7. Does the improper integral

∫

+∞

0

dx

1 + x3
converge or diverge? Justify your answer.

Solution: We begin by rewriting the integral as follows:

∫

+∞

0

dx

1 + x3
=

∫

1

0

dx

1 + x3
+

∫

+∞

1

dx

1 + x3

The first integral on the right hand side is a proper integral so we know that it converges. We
will use the Comparison Test to show that the second integral converges. Let g(x) = 1

1+x3 .
We must choose a function f(x) that satisfies:

(1)

∫

+∞

1

f(x) dx converges and (2) 0 ≤ g(x) ≤ f(x) for x ≥ 1

We choose f(x) = 1

x3 . This function satisfies the inequality:

0 ≤ g(x) ≤ f(x)

0 ≤

1

1 + x3
≤

1

x3

for x ≥ 1 because the denominator of g(x) is greater than the denominator of f(x) for these
values of x. Furthermore, the integral

∫

+∞

1
f(x) dx =

∫

+∞

1

1

x3 dx converges because it is a

p-integral with p = 3 > 1. Therefore, the integral
∫

+∞

1
g(x) dx =

∫

+∞

1

1

1+x3 dx converges by

the Comparison Test and the integral
∫

+∞

0

dx

1+x3 converges.

1
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Problem 8 Solution

8. What is the arc-length of the segment of the parabola y = 4 − x2 above the x-axis?

Solution: The arclength is:

L =

∫

b

a

√

1 + f ′(x)2 dx

=

∫

2

−2

√

1 + (−2x)2 dx

=

∫

2

−2

√

1 + 4x2 dx

= 2

∫

2

0

√

1 + 4x2 dx

We solve the integral using the trigonometric substitution x = 1

2
tan θ, dx = 1

2
sec2 θ dθ. The

indefinite integral is then:

∫

√

1 + 4x2 dx =

∫

√

1 + 4

(

1

2
tan θ

)2 (

1

2
sec2 θ dθ

)

=
1

2

∫

√

1 + tan2 θ sec2 θ dθ

=
1

2

∫

√

sec2 θ sec2 θ dθ

=
1

2

∫

sec3 θ dθ

=
1

4
tan θ sec θ +

1

4
ln |sec θ + tan θ|

Using the fact that x = 1

2
tan θ we find that tan θ = 2x and sec θ =

√

1 + 4x2 either using a
triangle or a Pythagorean identity. The integral in terms of x is then:

∫

√

1 + 4x2 dx =
1

4
tan θ sec θ +

1

4
ln |sec θ + tan θ| =

1

2
x
√

1 + 4x2 +
1

4
ln

∣

∣

∣

√

1 + 4x2 + 2x
∣

∣

∣

1



The arclength is then:

L = 2

∫

2

0

√

1 + 4x2 dx

= 2

[

1

2
x
√

1 + 4x2 +
1

4
ln

∣

∣

∣

√

1 + 4x2 + 2x
∣

∣

∣

]2

0

=

[

x
√

1 + 4x2 +
1

2
ln

∣

∣

∣

√

1 + 4x2 + 2x
∣

∣

∣

]2

0

=

[

2
√

1 + 4(2)2 +
1

2
ln

∣

∣

∣

√

1 + 4(2)2 + 2(2)
∣

∣

∣

]

−

[

0 ·

√

1 + 4(0)2 +
1

2
ln

∣

∣

∣

√

1 + 4(0)2 + 2(0)
∣

∣

∣

]

= 2
√

17 +
1

2
ln

(√

17 + 4
)

2
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Problem 9 Solution

9. Find a formula for the general Taylor polynomial Tn(x) for the following functions around
the specified points:

(a) e−x
2

around x = 0

(b)
√

x around x = 1

Solution:

(a) We’ll use a shortcut to find Tn(x). We’ll start with the general Maclaurin polynomial
for ex which is:

Tn(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
=

n
∑

k=0

xk

k!

and replace x with −x2 to get:

Tn(x) = 1 − x2 +
x4

2!
−

x6

3!
+ · · ·+

(−x2)n

n!
=

n
∑

k=0

(−x2)k

k!

(b) The function f(x) and its derivatives evaluated at a = 1 are:

k f (k)(x) f (k)(1)

0 x1/2 1

1
1

2
x−1/2

1

2

2 −
1

4
x−3/2

−
1

22

3
3

8
x−5/2

1 · 3

23

4 −

15

16
x−7/2

−

1 · 3 · 5

24

The Taylor polynomial of degree n is:

Tn(x) = 1 +
1

2
(x − 1) −

1

222!
(x − 1)2 +

1 · 3

233!
(x − 1)3

−

1 · 3 · 5

244!
+ . . .

= 1 +
1

2
(x − 1) +

n
∑

k=2

(−1)k−1
1 · 3 · . . . · (2k − 3)

2kk!
(x − 1)k

1
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