Math 181, Exam 2, Study Guide 2
 Problem 1 Solution

1. Use the trapezoid rule with $n=2$ to estimate the arc-length of the curve $y=\sin x$ between $x=0$ and $x=\pi$.

Solution: The arclength is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{\pi} \sqrt{1+(\cos x)^{2}} d x \\
& =\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x
\end{aligned}
$$

We now use the trapezoid rule with $n=2$ to estimate the value of the integral. The formula we will use is:

$$
T_{2}=\frac{\Delta x}{2}\left[f(0)+2 f\left(\frac{\pi}{2}\right)+f(\pi)\right]
$$

where $f(x)=\sqrt{1+\cos ^{2} x}$ and the value of Δx is:

$$
\Delta x=\frac{b-a}{n}=\frac{\pi-0}{2}=\frac{\pi}{2}
$$

The value of T_{2} is then:

$$
\begin{aligned}
T_{2} & =\frac{\Delta x}{2}\left[f(0)+2 f\left(\frac{\pi}{2}\right)+f(\pi)\right] \\
& =\frac{\frac{\pi}{2}}{2}\left[\sqrt{1+\cos ^{2} 0}+2 \sqrt{1+\cos ^{2} \frac{\pi}{2}}+\sqrt{1+\cos ^{2} \pi}\right] \\
& =\frac{\pi}{4}[\sqrt{1+1}+2 \sqrt{1+0}+\sqrt{1+1}] \\
& =\frac{\pi}{4}(2+\sqrt{2})
\end{aligned}
$$

Math 181, Exam 2, Study Guide 2
 Problem 2 Solution

2.

(a) Let R be the region between $y=\frac{1}{1+x^{2}}$ and the x-axis with $x \geq 0$. Does R have finite area? If so, what is the area?
(b) Let S be the solid obtained by revolving R around the y-axis. Does S have finite volume? If so, what is the volume?

Solution:

(a) The area of R is given by the improper integral:

$$
\text { Area }=\int_{0}^{+\infty} \frac{1}{x^{2}+1} d x
$$

We evaluate the integral by turning it into a limit calculation.

$$
\int_{0}^{+\infty} \frac{d x}{x^{2}+1}=\lim _{R \rightarrow+\infty} \int_{0}^{R} \frac{d x}{x^{2}+1}
$$

The integral has a simple antiderivative so its value is:

$$
\begin{aligned}
\int_{0}^{R} \frac{d x}{x^{2}+1} & =[\arctan x]_{0}^{R} \\
& =\arctan R-\arctan 0 \\
& =\arctan R
\end{aligned}
$$

We now take the limit of the above function as $R \rightarrow+\infty$.

$$
\begin{aligned}
\int_{0}^{+\infty} \frac{d x}{x^{2}+1} & =\lim _{R \rightarrow+\infty} \int_{0}^{R} \frac{d x}{x^{2}+1} \\
& =\lim _{R \rightarrow+\infty} \arctan R \\
& =\frac{\pi}{2}
\end{aligned}
$$

Thus, the area is finite and its value is $\frac{\pi}{2}$.
(b) The volume of S is obtained by using the Shell Method. The formula is

$$
V=\int_{0}^{\infty} 2 \pi x \cdot \frac{1}{x^{2}+1} d x
$$

To compute the integral we first turn it into a limit calculation.

$$
V=\pi \lim _{b \rightarrow \infty} \int_{0}^{b} \frac{2 x}{x^{2}+1} d x
$$

The value of the integral is

$$
\int_{0}^{b} \frac{2 x}{x^{2}+1} d x=\left[\ln \left|x^{2}+1\right|\right]_{0}^{b}=\ln \left(b^{2}+1\right)
$$

The volume is then

$$
V=\lim _{b \rightarrow \infty}, \ln \left(b^{2}+1\right)=\infty
$$

That is, the volume is not finite.

Math 181, Exam 2, Study Guide 2
 Problem 3 Solution

3. Evaluate the following integrals:
(a) $\int_{-\pi}^{\pi} \sin ^{4} x d x$
(b) $\int_{0}^{1} \frac{d x}{2 x^{2}+5 x+2}$
(c) $\int_{0}^{1} \frac{d x}{2 x^{2}+4 x+3}$
(d) $\int_{0}^{\infty} x^{2} e^{-x} d x$

Solution:

(a) We solve this integral using a reduction formula.

$$
\int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x
$$

Letting $n=4$ we get:

$$
\begin{aligned}
\int \sin ^{4} x d x & =-\frac{1}{4} \sin ^{3} x \cos x+\frac{3}{4} \int \sin ^{2} x d x \\
& =-\frac{1}{4} \sin ^{3} x \cos x+\frac{3}{4} \int \frac{1}{2}[1-\cos (2 x)] d x \\
& =-\frac{1}{4} \sin ^{3} x \cos x+\frac{3}{8} \int[1-\cos (2 x)] d x \\
& =-\frac{1}{4} \sin ^{3} x \cos x+\frac{3}{8} x-\frac{3}{16} \sin (2 x)
\end{aligned}
$$

To evaluate $\int \sin ^{2} x d x$ we used the double angle identity $\cos (2 x)=1-2 \sin ^{2} x$.
We now solve the definite integral.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin ^{4} x d x & =\left[-\frac{1}{4} \sin ^{3} x \cos x+\frac{3}{8} x-\frac{3}{16} \sin (2 x)\right]_{-\pi}^{\pi} \\
& =\left[-\frac{1}{4} \sin ^{3} \pi \cos \pi+\frac{3}{8} \pi-\frac{3}{16} \sin (2 \pi)\right]-\left[-\frac{1}{4} \sin ^{3}(-\pi) \cos (-\pi)+\frac{3}{8}(-\pi)-\frac{3}{16} \sin (-2 \pi)\right] \\
& =\left[0+\frac{3}{8} \pi-0\right]-\left[0-\frac{3}{8} \pi-0\right] \\
& =\frac{3}{4} \pi
\end{aligned}
$$

(b) We will evaluate the integral using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$
\frac{1}{2 x^{2}+5 x+2}=\frac{1}{(2 x+1)(x+2)}=\frac{A}{2 x+1}+\frac{B}{x+2}
$$

Next, we multiply the above equation by $(2 x+1)(x+2)$ to get:

$$
1=A(x+2)+B(2 x+1)
$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select $x=-\frac{1}{2}$ and $x=-2$ for simplicity.

$$
\begin{aligned}
& x=-\frac{1}{2}: A\left(-\frac{1}{2}+2\right)+B\left(2\left(-\frac{1}{2}\right)+1\right)=1 \Rightarrow A=\frac{2}{3} \\
& x=-2: A(-2+2)+B(2(-2)+1)=1 \Rightarrow B=-\frac{1}{3}
\end{aligned}
$$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$
\begin{aligned}
\int \frac{1}{2 x^{2}+5 x+2} d x & =\int\left(\frac{A}{2 x+1}+\frac{B}{x+2}\right) d x \\
& =\int\left(\frac{\frac{2}{3}}{2 x+1}+\frac{-\frac{1}{3}}{x+2}\right) d x \\
& =\frac{1}{3} \ln |2 x+1|-\frac{1}{3} \ln |x+2|
\end{aligned}
$$

We now solve the definite integral.

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{2 x^{2}+5 x+2} & =\left[\frac{1}{3} \ln |2 x+1|-\frac{1}{3} \ln |x+2|\right]_{0}^{1} \\
& =\left[\frac{1}{3} \ln |2(1)+1|-\frac{1}{3} \ln |1+2|\right]-\left[\frac{1}{3} \ln |2(0)+1|-\frac{1}{3} \ln |0+2|\right] \\
& =\frac{1}{3} \ln 3-\frac{1}{3} \ln 3-\frac{1}{3} \ln 1+\frac{1}{3} \ln 2 \\
& =\frac{1}{3} \ln 2
\end{aligned}
$$

(c) We begin by completing the square in the denominator.

$$
\int \frac{d x}{2 x^{2}+4 x+3}=\int \frac{d x}{2(x+1)^{2}+1}
$$

We then evaluate the integral using the u-substitution method. Let $u=\sqrt{2}(x+1)$. Then $d u=\sqrt{2} d x \Rightarrow \frac{1}{\sqrt{2}} d u=d x$ and we get:

$$
\begin{aligned}
\int \frac{d x}{2 x^{2}+4 x+3} & =\int \frac{d x}{2(x+1)^{2}+1} \\
& =\int \frac{d x}{[\sqrt{2}(x+1)]^{2}+1} \\
& =\int \frac{\frac{1}{\sqrt{2}} d u}{u^{2}+1} \\
& =\frac{1}{\sqrt{2}} \int \frac{d u}{u^{2}+1} \\
& =\frac{1}{\sqrt{2}} \arctan u+C \\
& =\frac{1}{\sqrt{2}} \arctan [\sqrt{2}(x+1)]
\end{aligned}
$$

We now solve the definite integral.

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{2 x^{2}+4 x+3} & =\left[\frac{1}{\sqrt{2}} \arctan [\sqrt{2}(x+1)]\right]_{0}^{1} \\
& =\frac{1}{\sqrt{2}} \arctan [\sqrt{2}(1+1)]-\frac{1}{\sqrt{2}} \arctan [\sqrt{2}(0+1)] \\
& =\frac{1}{\sqrt{2}}[\arctan (2 \sqrt{2})-\arctan (\sqrt{2})]
\end{aligned}
$$

(d) We evaluate the integral using Integration by Parts. Let $u=x^{2}$ and $v^{\prime}=e^{-x}$. Then $u^{\prime}=2 x$ and $v=-e^{-x}$. Using the Integration by Parts formula:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get:

$$
\begin{aligned}
\int x^{2} e^{-x} d x & =-x^{2} e^{-x}-\int 2 x\left(-e^{-x}\right) d x \\
& =-x^{2} e^{-x}+2 \int x e^{-x} d x
\end{aligned}
$$

A second Integration by Parts must be performed. Let $u=x$ and $v^{\prime}=e^{-x}$. Then $u^{\prime}=1$ and $v=-e^{-x}$. Using the Integration by Parts formula again we get:

$$
\begin{aligned}
\int x^{2} e^{-x} d x & =-x^{2} e^{-x}+2\left[-x e^{-x}-\int\left(-e^{-x}\right) d x\right] \\
& =-x^{2} e^{-x}-2 x e^{-x}+2 \int e^{-x} d x \\
& =-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}
\end{aligned}
$$

We now solve the definite integral. We recognize that it is an improper integral so we turn it into a limit and evaluate.

$$
\begin{aligned}
\int_{0}^{\infty} x^{2} e^{-x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} x^{2} e^{-x} d x \\
& =\lim _{b \rightarrow \infty}\left[-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left[-b^{2} e^{-b}-2 b e^{-b}-2 e^{-b}+2\right] \\
& =\lim _{b \rightarrow \infty}\left[-\frac{b^{2}}{e^{b}}-\frac{2 b}{e^{b}}-\frac{2}{e^{b}}+2\right] \\
& =-0-0-0+2 \\
& =2
\end{aligned}
$$

When computing the limits above, we used the fact that:

$$
\lim _{x \rightarrow 0} \frac{x^{n}}{e^{x}}=0
$$

by repeated application of L'Hopital's Rule.

Math 181, Exam 2, Study Guide 2 Problem 4 Solution

4. Use a Taylor polynomial for $y=e^{x}$ to calculate e to two decimal places. Explain (using the remainder formula) why you have used sufficiently many terms.

Solution: We will find the nth degree Maclaurin polynomial of $f(x)=e^{x}$ so that the error $\left|T_{n}(1)-f(1)\right|=\left|T_{n}(1)-e\right|$ is less than 10^{-2}. That is, we must find a value of n that ensures that the Error Bound satisfies the inequality:

$$
\text { Error }=\left|T_{n}(1)-e\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!}<10^{-2}
$$

where $x=1, a=0$, and K satisfies the inequality $\left|f^{(n+1)}(u)\right| \leq K$ for all $u \in[0,1]$. Since $\left|f^{(n+1)}(u)\right|=e^{u}<3$ for all $u \in[0,1]$ we choose $K=3$. We now want to satisfy the inequality:

$$
\begin{aligned}
& \text { Error }=\left|T_{n}(1)-e\right| \leq 3 \frac{|1-0|^{n+1}}{(n+1)!}<10^{-2} \\
& \qquad \text { Error }=\left|T_{n}(1)-e\right| \leq \frac{3}{(n+1)!}<10^{-2}=\frac{1}{100}
\end{aligned}
$$

We will find an appropriate value of n by a trial and error process.

n	$\frac{3}{(n+1)!}$
1	$\frac{3}{2!}=\frac{3}{2}$
2	$\frac{3}{3!}=\frac{1}{6}$
3	$\frac{3}{4!}=\frac{1}{8}$
4	$\frac{3}{5!}=\frac{1}{40}$
5	$\frac{3}{6!}=\frac{1}{240}<\frac{1}{100}$

Therefore, we choose $n=5$. The Maclaurin polynomial $T_{5}(x)$ for $f(x)=e^{x}$ is:

$$
T_{5}(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}
$$

Evaluating at $x=1$ we get:

$$
\begin{aligned}
& T_{5}(1)=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!} \\
& T_{5}(1)=\frac{163}{60} \approx 2.71 \overline{6}
\end{aligned}
$$

Math 181, Exam 2, Study Guide 2
 Problem 5 Solution

5. Let S be the surface obtained by revolving the curve $y=\sin x$ between $x=0$ and $x=\pi$ around the x-axis. What is the surface area of S ?

Solution: The surface area formula is:

$$
\text { Surface Area }=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Using $a=0, b=\pi, f(x)=\sin x$, and $f^{\prime}(x)=\cos x$ we get:

$$
\begin{aligned}
\text { Surface Area } & =2 \pi \int_{0}^{\pi} \sin x \sqrt{1+(\cos x)^{2}} d x \\
& =2 \pi \int_{0}^{\pi} \sin x \sqrt{1+\cos ^{2} x} d x
\end{aligned}
$$

To evaluate the integral we use the u-substitution $u=\cos x$. Then $-d u=\sin x d x$, the lower limit of integration changes from 0 to 1 , and the upper limit changes from π to -1 . Making these substitutions we get:

$$
\begin{aligned}
\text { Surface Area } & =-2 \pi \int_{1}^{-1} \sqrt{1+u^{2}} d u \\
& =2 \pi \int_{-1}^{1} \sqrt{1+u^{2}} d u \\
& =4 \pi \int_{0}^{1} \sqrt{1+u^{2}} d u
\end{aligned}
$$

where, in the last step, we used the fact that $\sqrt{1+u^{2}}$ is symmetric with respect to the y-axis. To evaluate this integral we'll use the trigonometric substitution $u=\tan \theta$ and $d u=\sec ^{2} d \theta$. We get:

$$
\begin{aligned}
\int \sqrt{1+u^{2}} d u & =\int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\int \sqrt{\sec ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\int \sec ^{3} \theta d \theta \\
& =\frac{1}{2} \tan \theta \sec \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|
\end{aligned}
$$

where the integral of $\sec ^{3} \theta$ is determined via a reduction formula. Using the fact that $u=\tan \theta$ we find that $\sec \theta=\sqrt{1+u^{2}}$ using a Pythagorean identity. Therefore,

$$
\int \sqrt{1+u^{2}} d u=\frac{1}{2} u \sqrt{1+u^{2}}+\ln \left|\sqrt{1+u^{2}}+u\right|
$$

The surface area is then:

$$
\begin{aligned}
\text { Surface Area } & =4 \pi \int_{0}^{1} \sqrt{1+u^{2}} d u \\
& =4 \pi\left[\frac{1}{2} u \sqrt{1+u^{2}}+\ln \left|\sqrt{1+u^{2}}+u\right|\right]_{0}^{1} \\
& =4 \pi\left[\frac{1}{2}(1) \sqrt{1+1^{2}}+\ln \left|\sqrt{1+1^{2}}+1\right|\right]-4 \pi\left[\frac{1}{2}(0) \sqrt{1+0^{2}}+\ln \left|\sqrt{1+0^{2}}+0\right|\right] \\
& =4 \pi\left[\frac{\sqrt{2}}{2}+\ln 2\right]-4 \pi[0+\ln 1] \\
& =2 \pi \sqrt{2}+2 \pi \ln 2
\end{aligned}
$$

Math 181, Exam 2, Study Guide 2 Problem 6 Solution

6.

(a) Estimate $\ln \frac{3}{2}$ using the degree two Taylor polynomial for $y=\ln x$ around $x=1$.
(b) Estimate $\ln \frac{3}{2}$ using the Midpoint rule with $n=2$ for the integral $\int_{1}^{3 / 2} \frac{d x}{x}$.
(c) Calculate the error bounds for the two estimates. Does this tell you which is closer to the exact answer?

Solution:
(a) The degree two Taylor polynomial for $f(x)=\ln x$ around $x=1$ has the formula:

$$
T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}
$$

The derivatives of $f(x)$ evaluated at $x=1$ are:

k	$f^{(k)}(x)$	$f^{(k)}(1)$
0	$\ln x$	$\ln 1=0$
1	$\frac{1}{x}$	$\frac{1}{1}=1$
2	$-\frac{1}{x^{2}}$	$-\frac{1}{1^{2}}=-1$

The Taylor polynomial $T_{2}(x)$ is then:

$$
\begin{aligned}
& T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2} \\
& T_{2}(x)=0+(x-1)-\frac{1}{2!}(x-1)^{2} \\
& T_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2}
\end{aligned}
$$

We will now estimate $\ln \frac{3}{2}$ using $T_{2}\left(\frac{3}{2}\right)$.

$$
\begin{aligned}
\ln \frac{3}{2} & \approx T_{2}\left(\frac{3}{2}\right) \\
& \approx\left(\frac{3}{2}-1\right)-\frac{1}{2}\left(\frac{3}{2}-1\right)^{2} \\
& \approx \frac{3}{8}
\end{aligned}
$$

(b) The value of Δx in the Midpoint rule is:

$$
\Delta x=\frac{b-a}{n}=\frac{\frac{3}{2}-1}{2}=\frac{1}{4}
$$

The Midpoint estimate M_{2} is:

$$
\begin{aligned}
M_{2} & =\Delta x\left[f\left(\frac{9}{8}\right)+f\left(\frac{11}{8}\right)\right] \\
& =\frac{1}{4}\left[\frac{1}{\frac{9}{8}}+\frac{1}{\frac{11}{8}}\right] \\
& =\frac{1}{4}\left[\frac{8}{9}+\frac{8}{11}\right] \\
& =\frac{40}{99}
\end{aligned}
$$

(c) The error bound for part (a) is given by the formula:

$$
\text { Error } \leq K \frac{|x-a|^{n+1}}{(n+1)!}
$$

where $x=\frac{3}{2}, a=1, n=2$, and K satisfies the inequality $\left|f^{\prime \prime \prime}(u)\right| \leq K$ for all $u \in\left[1, \frac{3}{2}\right]$. One can show that $f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$. We conclude that $\left|f^{\prime \prime \prime}(u)\right|=\left|\frac{2}{u^{3}}\right|<2$ for all $u \in\left[1, \frac{3}{2}\right]$. So we choose $K=2$ and the error bound is:

$$
\text { Error } \leq 2 \frac{\left|\frac{3}{2}-1\right|^{3}}{3!}=\frac{1}{24}
$$

The error bound for part (b) is given by the formula:

$$
\operatorname{Error}\left(M_{n}\right) \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

where $a=1, b=\frac{3}{2}, n=2$, and K satisfies the inequality $\left|\left(\frac{1}{x}\right)^{\prime \prime}\right| \leq K$ for all $x \in\left[1, \frac{3}{2}\right]$. We conclude that $\left|\left(\frac{1}{x}\right)^{\prime \prime}\right|=\left|\frac{2}{x^{3}}\right| \leq 2$ for all $x \in\left[1, \frac{3}{2}\right]$. So we choose $K=2$ and the error bound is:

$$
\operatorname{Error}\left(M_{2}\right) \leq \frac{2 \cdot\left(\frac{3}{2}-1\right)^{3}}{24(2)^{2}}=\frac{1}{384}
$$

We cannot tell which of $\frac{3}{8}$ and $\frac{40}{99}$ is closer to the exact answer. All we know is that both errors are smaller than $\frac{1}{24}$.

Math 181, Exam 2, Study Guide 2
 Problem 7 Solution

7. Does the improper integral $\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ converge or diverge? Justify your answer.

Solution: We begin by rewriting the integral as follows:

$$
\int_{0}^{+\infty} \frac{d x}{1+x^{3}}=\int_{0}^{1} \frac{d x}{1+x^{3}}+\int_{1}^{+\infty} \frac{d x}{1+x^{3}}
$$

The first integral on the right hand side is a proper integral so we know that it converges. We will use the Comparison Test to show that the second integral converges. Let $g(x)=\frac{1}{1+x^{3}}$. We must choose a function $f(x)$ that satisfies:

$$
\text { (1) } \int_{1}^{+\infty} f(x) d x \text { converges and (2) } 0 \leq g(x) \leq f(x) \text { for } x \geq 1
$$

We choose $f(x)=\frac{1}{x^{3}}$. This function satisfies the inequality:

$$
\begin{aligned}
& 0 \leq g(x) \leq f(x) \\
& 0 \leq \frac{1}{1+x^{3}} \leq \frac{1}{x^{3}}
\end{aligned}
$$

for $x \geq 1$ because the denominator of $g(x)$ is greater than the denominator of $f(x)$ for these values of x. Furthermore, the integral $\int_{1}^{+\infty} f(x) d x=\int_{1}^{+\infty} \frac{1}{x^{3}} d x$ converges because it is a p-integral with $p=3>1$. Therefore, the integral $\int_{1}^{+\infty} g(x) d x=\int_{1}^{+\infty} \frac{1}{1+x^{3}} d x$ converges by the Comparison Test and the integral $\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ converges.

Math 181, Exam 2, Study Guide 2
 Problem 8 Solution

8. What is the arc-length of the segment of the parabola $y=4-x^{2}$ above the x-axis?

Solution: The arclength is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =\int_{-2}^{2} \sqrt{1+(-2 x)^{2}} d x \\
& =\int_{-2}^{2} \sqrt{1+4 x^{2}} d x \\
& =2 \int_{0}^{2} \sqrt{1+4 x^{2}} d x
\end{aligned}
$$

We solve the integral using the trigonometric substitution $x=\frac{1}{2} \tan \theta, d x=\frac{1}{2} \sec ^{2} \theta d \theta$. The indefinite integral is then:

$$
\begin{aligned}
\int \sqrt{1+4 x^{2}} d x & =\int \sqrt{1+4\left(\frac{1}{2} \tan \theta\right)^{2}}\left(\frac{1}{2} \sec ^{2} \theta d \theta\right) \\
& =\frac{1}{2} \int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\frac{1}{2} \int \sqrt{\sec ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\frac{1}{2} \int \sec ^{3} \theta d \theta \\
& =\frac{1}{4} \tan \theta \sec \theta+\frac{1}{4} \ln |\sec \theta+\tan \theta|
\end{aligned}
$$

Using the fact that $x=\frac{1}{2} \tan \theta$ we find that $\tan \theta=2 x$ and $\sec \theta=\sqrt{1+4 x^{2}}$ either using a triangle or a Pythagorean identity. The integral in terms of x is then:

$$
\int \sqrt{1+4 x^{2}} d x=\frac{1}{4} \tan \theta \sec \theta+\frac{1}{4} \ln |\sec \theta+\tan \theta|=\frac{1}{2} x \sqrt{1+4 x^{2}}+\frac{1}{4} \ln \left|\sqrt{1+4 x^{2}}+2 x\right|
$$

The arclength is then:

$$
\begin{aligned}
L & =2 \int_{0}^{2} \sqrt{1+4 x^{2}} d x \\
& =2\left[\frac{1}{2} x \sqrt{1+4 x^{2}}+\frac{1}{4} \ln \left|\sqrt{1+4 x^{2}}+2 x\right|\right]_{0}^{2} \\
& =\left[x \sqrt{1+4 x^{2}}+\frac{1}{2} \ln \left|\sqrt{1+4 x^{2}}+2 x\right|\right]_{0}^{2} \\
& =\left[2 \sqrt{1+4(2)^{2}}+\frac{1}{2} \ln \left|\sqrt{1+4(2)^{2}}+2(2)\right|\right]-\left[0 \cdot \sqrt{1+4(0)^{2}}+\frac{1}{2} \ln \left|\sqrt{1+4(0)^{2}}+2(0)\right|\right] \\
& =2 \sqrt{17}+\frac{1}{2} \ln (\sqrt{17}+4)
\end{aligned}
$$

Math 181, Exam 2, Study Guide 2
 Problem 9 Solution

9. Find a formula for the general Taylor polynomial $T_{n}(x)$ for the following functions around the specified points:
(a) $e^{-x^{2}}$ around $x=0$
(b) \sqrt{x} around $x=1$

Solution:

(a) We'll use a shortcut to find $T_{n}(x)$. We'll start with the general Maclaurin polynomial for e^{x} which is:

$$
T_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}=\sum_{k=0}^{n} \frac{x^{k}}{k!}
$$

and replace x with $-x^{2}$ to get:

$$
T_{n}(x)=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots+\frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}
$$

(b) The function $f(x)$ and its derivatives evaluated at $a=1$ are:

k	$f^{(k)}(x)$	$f^{(k)}(1)$
0	$x^{1 / 2}$	1
1	$\frac{1}{2} x^{-1 / 2}$	$\frac{1}{2}$
2	$-\frac{1}{4} x^{-3 / 2}$	$-\frac{1}{2^{2}}$
3	$\frac{3}{8} x^{-5 / 2}$	$\frac{1 \cdot 3}{2^{3}}$
4	$-\frac{15}{16} x^{-7 / 2}$	$-\frac{1 \cdot 3 \cdot 5}{2^{4}}$

The Taylor polynomial of degree n is:

$$
\begin{aligned}
T_{n}(x) & =1+\frac{1}{2}(x-1)-\frac{1}{2^{2} 2!}(x-1)^{2}+\frac{1 \cdot 3}{2^{3} 3!}(x-1)^{3}-\frac{1 \cdot 3 \cdot 5}{2^{4} 4!}+\ldots \\
& =1+\frac{1}{2}(x-1)+\sum_{k=2}^{n}(-1)^{k-1} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-3)}{2^{k} k!}(x-1)^{k}
\end{aligned}
$$

