Math 181, Final Exam, Fall 2011
 Problem 1 Solution

1. Find the limit of the following sequences as $n \rightarrow \infty$.
(a) $a_{n}=\frac{3 n^{4}-n^{3}+2}{2 n^{4}+n^{2}-10}$
(b) $b_{n}=\frac{n+\sin (n)}{2 n^{2}-n+1}$

Solution:

(a) We proceed by multiplying the function by $\frac{1}{n^{4}}$ divided by itself and then use the fact that $\lim _{n \rightarrow \infty} \frac{c}{n^{p}}=0$ for any constant c and any positive number p.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n^{4}-n^{3}+2}{2 n^{4}+n^{2}-10} \cdot \frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}}, \\
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3-\frac{1}{n}+\frac{2}{n^{4}}}{2+\frac{1}{n^{2}}-\frac{10}{n^{2}}}, \\
& \lim _{n \rightarrow \infty} a_{n}=\frac{3-0+0}{2+0-0}, \\
& \lim _{n \rightarrow \infty} a_{n}=\frac{3}{2}
\end{aligned}
$$

(b) We begin by multiplying the given function by $\frac{1}{n^{2}}$ divided by itself.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n+\sin (n)}{2 n^{2}-n+1} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\frac{\sin (n)}{n^{2}}}{2-\frac{1}{n}+\frac{1}{n^{2}}} .
\end{aligned}
$$

We know that the limits of $\frac{1}{n}$ and $\frac{1}{n^{2}}$ as $n \rightarrow \infty$ are both 0 using the fact that $\lim _{n \rightarrow \infty} \frac{c}{n^{p}}=0$ for any constant c and any positive number p.

We use the Squeeze Theorem to evaluate the limit of $\frac{\sin (n)}{n^{2}}$ as $n \rightarrow \infty$. To begin, we note that $-1 \leq \sin (n) \leq 1$ for all n. We then divide each part of the inequality by n^{2} to obtain

$$
-\frac{1}{n^{2}} \leq \frac{\sin (n)}{n^{2}} \leq \frac{1}{n^{2}}
$$

The limits of $-\frac{1}{n^{2}}$ and $\frac{1}{n^{2}}$ as $n \rightarrow \infty$ are both 0 . Thus, the limit of $\frac{\sin (n)}{n^{2}}$ as $n \rightarrow \infty$ is also 0 by the Squeeze Theorem.

The value of the limit is then:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\frac{\sin (n)}{n^{2}}}{2-\frac{1}{n}+\frac{1}{n^{2}}} \\
& \lim _{n \rightarrow \infty} b_{n}=\frac{0+0}{2-0+0} \\
& \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

Math 181, Final Exam, Fall 2011
 Problem 2 Solution

2. Determine whether each series converges or diverges. Justify your answer.
(a) $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$
(b) $\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{2^{k}}$

Solution:

(a) We will use the Integral Test to show that the integral diverges. The function $f(x)=$ $\frac{1}{x \ln x}$ is positive and decreasing for $x \geq 2$ and the value of the integral of $f(x)$ on $[2, \infty)$ is:

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x \ln x} d x \\
& \int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{b \rightarrow \infty}[\ln (\ln x)]_{2}^{b} \\
& \int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{b \rightarrow \infty}[\ln (\ln b)-\ln (\ln 2)] \\
& \int_{2}^{\infty} \frac{1}{x \ln x} d x=\infty
\end{aligned}
$$

Thus, since the integral diverges we know that the series diverges by the Integral Test.
Note: The antiderivative of $\frac{1}{x \ln x}$ was determined using the substitution $u=\ln x$, $d u=\frac{1}{x} d x$.
(b) The series is alternating so we will use the Alternating Series Test to show that it converges. First, we note that $f(k)=\frac{k^{2}}{2^{k}}$ is positive and decreasing for $k \geq 1$. Also,

$$
\lim _{k \rightarrow \infty} \frac{k^{2}}{2^{k}}=0
$$

because we know that exponential functions grow much faster than polynomials. Therefore, the series converges by the Alternating Series Test.

Note: An alternative solution is to show that the series converges absolutely by testing the series $\sum \frac{k^{2}}{2^{k}}$ using, for example, the Ratio Test.

Math 181, Final Exam, Fall 2011
 Problem 3 Solution

3. Determine whether each improper integral converges or diverges. Justify your answer.
(a) $\int_{0}^{2} \frac{1}{\sqrt{x}(x-2)} d x$
(b) $\int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x$

Solution:

(a) The integrand is undefined at both limits of integration so we begin by splitting the integral into two integrals.

$$
\int_{0}^{2} \frac{1}{\sqrt{x}(x-2)} d x=\int_{0}^{1} \frac{1}{\sqrt{x}(x-2)} d x+\int_{1}^{2} \frac{1}{\sqrt{x}(x-2)} d x
$$

An antiderivative for $\frac{1}{\sqrt{x}(x-2)}$ is found by letting $u=\sqrt{x}, u^{2}=x$, and $2 d u=\frac{1}{\sqrt{x}} d x$. Making these substitutions we get

$$
\int \frac{1}{\sqrt{x}(x-2)} d x=\int \frac{2}{u^{2}-2} d u
$$

We now use the Method of Partial Fractions to evaluate the integral on the right hand side. Omitting the details of the decomposition, we end up with

$$
\frac{2}{u^{2}-2}=\frac{\frac{1}{\sqrt{2}}}{u-\sqrt{2}}-\frac{\frac{1}{\sqrt{2}}}{u+\sqrt{2}}
$$

The antiderivative of $\frac{1}{\sqrt{x}(x-2)}$ is then

$$
\begin{aligned}
\int \frac{1}{\sqrt{x}(x-2)} d x & =\int \frac{2}{u^{2}-2} d u \\
& =\int\left(\frac{\frac{1}{\sqrt{2}}}{u-\sqrt{2}}-\frac{\frac{1}{\sqrt{2}}}{u+\sqrt{2}}\right) d u \\
& =\frac{1}{\sqrt{2}} \int\left(\frac{1}{u-\sqrt{2}}-\frac{1}{u+\sqrt{2}}\right) d u \\
& =\frac{1}{\sqrt{2}}(\ln |u-\sqrt{2}|-\ln |u+\sqrt{2}|), \\
& =\frac{1}{\sqrt{2}}(\ln |\sqrt{x}-\sqrt{2}|-\ln |\sqrt{x}+\sqrt{2}|) \\
& =\frac{1}{\sqrt{2}} \ln \left|\frac{\sqrt{x}-\sqrt{2}}{\sqrt{x}+\sqrt{2}}\right| .
\end{aligned}
$$

Returning to the integral $\int_{1}^{2} \frac{1}{\sqrt{x}(x-2)} d x$ we find that

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{\sqrt{x}(x-2)} d x=\lim _{b \rightarrow 2^{-}} \int_{1}^{b} \frac{1}{\sqrt{x}(x-2)} d x \\
& \int_{1}^{2} \frac{1}{\sqrt{x}(x-2)} d x=\lim _{b \rightarrow 2^{-}} \frac{1}{\sqrt{2}} \ln \left|\frac{\sqrt{b}-\sqrt{2}}{\sqrt{b}+\sqrt{2}}\right|-\frac{1}{\sqrt{2}} \ln \left|\frac{1-\sqrt{2}}{1+\sqrt{2}}\right|
\end{aligned}
$$

The limit of the first term is $-\infty$ because the term inside the natural logarithm tends to 0 as $b \rightarrow 2^{-}$. The second term is constant so it will remain constant in the limit as $b \rightarrow 2^{-}$. Therefore, the value of the integral is

$$
\int_{1}^{2} \frac{1}{\sqrt{x}(x-2)} d x=-\infty
$$

Since this integral diverges, the integral $\int_{0}^{2} \frac{1}{\sqrt{x}(x-2)} d x$ diverges as well.
(b) We begin by rewriting the integral as a limit.

$$
\int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\arctan x}{x^{2}} d x
$$

We now focus on finding an antiderivative of $\frac{\arctan x}{x^{2}}$ using Integration by Parts. Letting $u=\arctan x$ and $d v=\frac{1}{x^{2}} d x$ we get $d u=\frac{1}{1+x^{2}} d x$ and $v=-\frac{1}{x}$. Using the Integration by Parts formula we find that

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \frac{\arctan x}{x^{2}} d x & =-\frac{\arctan x}{x}+\int \frac{1}{x\left(1+x^{2}\right)} d x
\end{aligned}
$$

The integral on the right hand side is evaluated using the Method of Partial Fractions.

$$
\begin{aligned}
& \int \frac{1}{x\left(1+x^{2}\right)} d x=\int\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x \\
& \int \frac{1}{x\left(1+x^{2}\right)} d x=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right| \\
& \int \frac{1}{x\left(1+x^{2}\right)} d x=\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|
\end{aligned}
$$

Thus, an antiderivative of $\frac{\arctan x}{x^{2}}$ is

$$
\int \frac{\arctan x}{x^{2}} d x=-\frac{\arctan x}{x}+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|
$$

We can now evaluate the improper integral.

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\arctan x}{x^{2}} d x \\
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\lim _{b \rightarrow \infty}\left[-\frac{\arctan x}{x}+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|\right]_{1}^{b} \\
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\lim _{b \rightarrow \infty}\left[\left(-\frac{\arctan b}{b}+\ln \left|\frac{b}{\sqrt{b^{2}+1}}\right|\right)-\left(-\frac{\arctan 1}{1}+\ln \left|\frac{1}{\sqrt{1^{2}+1}}\right|\right)\right] \\
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\underbrace{\lim _{b \rightarrow \infty}\left(-\frac{\arctan b}{b}\right)}_{\rightarrow-\frac{\pi / 2}{\infty}=0}+\ln |\underbrace{\lim _{b \rightarrow \infty} \frac{b}{\sqrt{b^{2}+1}}}_{\rightarrow 1}|+\frac{\pi}{4}-\ln \left(\frac{1}{\sqrt{2}}\right), \\
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=0+\ln |1|+\frac{\pi}{4}-\ln \left(\frac{1}{\sqrt{2}}\right) \\
& \int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x=\frac{\pi}{4}-\ln \left(\frac{1}{\sqrt{2}}\right) .
\end{aligned}
$$

Since the integral evaluates to a number we say that it converges.

Math 181, Final Exam, Fall 2011 Problem 4 Solution

4. Evaluate the following integrals:
(a) $\int(\cos x)^{-1} \sin ^{3} x d x$
(b) $\int \frac{1}{x^{2}-4 x-12} d x$

Solution:

(a) We begin by rewriting $\sin ^{3} x$ as $\sin x \sin ^{2} x=\sin x\left(1-\cos ^{2} x\right)$. Now let $u=\cos x$ and $-d u=\sin x d x$. The integral is then transformed and evaluated as follows:

$$
\begin{aligned}
& \int(\cos x)^{-1} \sin ^{3} x d x=\int \frac{1}{\cos x} \cdot \sin x\left(1-\cos ^{2} x\right) d x \\
& \int(\cos x)^{-1} \sin ^{3} x d x=-\int \frac{1}{u} \cdot\left(1-u^{2}\right) d u, \\
& \int(\cos x)^{-1} \sin ^{3} x d x=-\int\left(\frac{1}{u}-u\right) d u, \\
& \int(\cos x)^{-1} \sin ^{3} x d x=-\ln |u|+\frac{1}{2} u^{2}+C, \\
& \int(\cos x)^{-1} \sin ^{3} x d x=-\ln |\cos x|+\frac{1}{2} \cos ^{2} x+C .
\end{aligned}
$$

(b) Using the Method of Partial Fractions we find that

$$
\begin{aligned}
\int \frac{1}{x^{2}-4 x-12} d x & =\int\left(\frac{\frac{1}{8}}{x-6}-\frac{\frac{1}{8}}{x+2}\right) d x \\
\int \frac{1}{x^{2}-4 x-12} d x & =\frac{1}{8} \ln |x-6|-\frac{1}{8} \ln |x+2|+C
\end{aligned}
$$

Math 181, Final Exam, Fall 2011
 Problem 5 Solution

5. Find the volume of the solid obtained by rotating about the x-axis the region enclosed by the graphs of $y=2 x-x^{2}$ and $y=x$.

Solution: We find the volume using the Washer Method.

$$
V=\int_{a}^{b} \pi\left(\mathrm{top}^{2}-\mathrm{bottom}^{2}\right) d x
$$

From the graph below we see that the bottom curve is $y=x$ and the top curve is $y=2 x-x^{2}$. The intersection points are determined by setting the two equations equal to one another and solving for x.

$$
\begin{aligned}
y & =y \\
x & =2 x-x^{2}, \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x=0, x & =1
\end{aligned}
$$

The volume is then

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(\left(2 x-x^{2}\right)^{2}-x^{2}\right) d x \\
V & =\pi \int_{0}^{1}\left(4 x^{2}-4 x^{3}+x^{4}-x^{2}\right) d x \\
V & =\pi \int_{0}^{1}\left(x^{4}-4 x^{3}+3 x^{2}\right) d x \\
V & =\pi\left[\frac{1}{5} x^{5}-x^{4}+x^{3}\right]_{0}^{1} \\
V & =\pi\left(\frac{1}{5}-1+1\right) \\
V & =\frac{\pi}{5}
\end{aligned}
$$

Math 181, Final Exam, Fall 2011
 Problem 6 Solution

6. Find the power series representation centered at 0 for the following functions. Give the interval of convergence of the series.
(a) $f(x)=\frac{1}{(1-x)^{2}}$
(b) $g(x)=x^{2} e^{-x}$

Solution:

(a) First we recognize that

$$
f(x)=\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}
$$

Then, using the fact that the power series for $\frac{1}{1-x}$ centered at 0 is

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots
$$

we obtain

$$
\begin{aligned}
& \frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x} \\
& \frac{1}{(1-x)^{2}}=\frac{d}{d x}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& \frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+\cdots \\
& \frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}
\end{aligned}
$$

The interval of convergence of the power series for $\frac{1}{1-x}$ is $-1<x<1$ so we know that the power series for $\frac{1}{(1-x)^{2}}$ converges for the same values of x. Upon checking the endpoints $x=-1$ and $x=1$ we get the two series

$$
\sum_{k=1}^{\infty} k(-1)^{k-1} \quad \text { and } \quad \sum_{k=1}^{\infty} k
$$

which both diverge by the Divergence Test. Thus, the interval of convergence is $-1<$ $x<1$.
(b) Using the fact that the power series centered at 0 for e^{x} is

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

we obtain

$$
e^{-x}=\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots
$$

Therefore, the power series for $g(x)=x^{2} e^{-x}$ is

$$
\begin{aligned}
& x^{2} e^{-x}=x^{2}\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots\right), \\
& x^{2} e^{-x}=x^{2}-x^{3}+\frac{x^{4}}{2!}-\frac{x^{5}}{3!}+\cdots, \\
& x^{2} e^{-x}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+2}}{k!}
\end{aligned}
$$

The interval of convergence of the power series for e^{x} is $-\infty<x<\infty$. Thus, the interval of convergence of the power series for e^{-x} is also $-\infty<x<\infty$. Multiplication by x^{n} where n is a positive integer does not change the interval of convergence. Thus, the interval of convergence for $x^{2} e^{-x}$ is $-\infty<x<\infty$.

Math 181, Final Exam, Fall 2011 Problem 7 Solution

7. Let $f(x)=\cos (2 x)-1+2 x^{2}$.
(a) Find the first two non-zero terms in the Maclaurin series expansion of f.
(b) Using the expansion found in step (a) compute the limit:

$$
\lim _{x \rightarrow 0} \frac{\cos (2 x)-1+2 x^{2}}{x^{4}}
$$

Solution:

(a) Using the fact that the Maclaurin series for $\cos (x)$ is

$$
\cos (x)=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

we have

$$
\begin{aligned}
& \cos (2 x)=\sum_{k=0}^{\infty} \frac{(2 x)^{2 k}}{(2 k)!} \\
& \cos (2 x)=1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots \\
& \cos (2 x)=1-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\cdots
\end{aligned}
$$

Therefore, the first two non-zero terms in the Maclaurin series expansion of f are

$$
\begin{aligned}
f(x) & =\cos (2 x)-1+2 x^{2} \\
f(x) & =\left(1-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\cdots\right)-1+2 x^{2}, \\
f(x) & =\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\cdots
\end{aligned}
$$

(b) Using the expansion from part (a), we evaluate the limit as follows:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos (2 x)-1+2 x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\cdots}{x^{4}} \\
& \lim _{x \rightarrow 0} \frac{\cos (2 x)-1+2 x^{2}}{x^{4}}=\lim _{x \rightarrow 0}\left(\frac{2}{3}-\frac{4}{45} x^{2}+\cdots\right), \\
& \lim _{x \rightarrow 0} \frac{\cos (2 x)-1+2 x^{2}}{x^{4}}=\frac{2}{3}
\end{aligned}
$$

Math 181, Final Exam, Fall 2011 Problem 8 Solution

8. An equation of a curve in polar coordinates is given by

$$
r=2 \cos \theta, \quad 0 \leq \theta \leq 2 \pi
$$

(a) Rewrite the equation in Cartesian coordinates. Sketch and identify the curve.
(b) Find the arc length of the curve using the integral formula.

Solution:

(a) To rewrite the equation in Cartesian coordinates we begin by multiplying both sides of the equation by r to get

$$
r^{2}=2 r \cos \theta
$$

Then, recognizing the fact that $x^{2}+y^{2}=r^{2}$ and that $x=r \cos \theta$ we get

$$
x^{2}+y^{2}=2 x
$$

To take things a step further, we put the $2 x$ to the left hand side and complete the square to get

$$
\begin{aligned}
x^{2}+y^{2} & =2 x, \\
x^{2}-2 x+y^{2} & =0, \\
(x-1)^{2}-1+y^{2} & =0, \\
(x-1)^{2}+y^{2} & =1,
\end{aligned}
$$

which we recognize is a circle centered at $(1,0)$ with radius 1 . A plot of the curve is sketched below.

(b) The arc length formula for a curve $r=f(\theta)$ defined on the interval $\alpha \leq \theta \leq \beta$ in polar coordinates is

$$
L=\int_{\alpha}^{\beta} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta
$$

In this case, the function is $f(\theta)=2 \cos \theta$ so that $f^{\prime}(\theta)=-2 \sin \theta$. The arc length is then

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{(2 \cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta \\
L & =\int_{0}^{2 \pi} \sqrt{4 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta \\
L & =\int_{0}^{2 \pi} \sqrt{4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta \\
L & =\int_{0}^{2 \pi} \sqrt{4(1)} d \theta \\
L & =\int_{0}^{2 \pi} 2 d \theta \\
L & =\left.2 \theta\right|_{0} ^{2 \pi} \\
L & =4 \pi
\end{aligned}
$$

