Final Exam, Fall 2013

David Cabrera
Math 181 - Calculus II
University of Illinois Chicago

1. Evaluate $\int x \ln (x) d x$.

Solution: We use Integration by Parts. Letting $u=\ln (x)$ and $d v=x d x$ yields $d u=\frac{1}{x} d x$ and $v=\frac{1}{2} x^{2}$. The Integration by Parts formula is

$$
\int u d v=u v-\int v d u .
$$

Thus, we have

$$
\begin{aligned}
& \int x \ln (x) d x=\frac{1}{2} x^{2} \ln (x)-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
& \int x \ln (x) d x=\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& \int x \ln (x) d x=\frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}+C
\end{aligned}
$$

2. Evaluate the integral $\int e^{2 x} \cos (x) d x$.

Solution: We use Integration by Parts. Letting $u=e^{2 x}$ and $d v=\cos (x) d x$ yields $d u=2 e^{2 x} d x$ and $v=\sin (x)$. The Integration by Parts formula is

$$
\int u d v=u v-\int v d u .
$$

Thus, we have

$$
\begin{aligned}
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)-\int \sin (x) \cdot 2 e^{2 x} d x \\
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)-2 \int e^{2 x} \sin (x) d x
\end{aligned}
$$

We now use another Integration by Parts. Letting $u=e^{2 x}$ and $d v=\sin (x) d x$ yields $d u=2 e^{2 x} d x$ and $v=-\cos (x)$. Thus, we have

$$
\begin{aligned}
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)-2 \int e^{2 x} \sin (x) d x \\
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)-2\left[-e^{2 x} \cos (x)+2 \int e^{2 x} \cos (x) d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)-2\left[-e^{2 x} \cos (x)+2 \int e^{2 x} \cos (x) d x\right] \\
& \int e^{2 x} \cos (x) d x=e^{2 x} \sin (x)+2 e^{2 x} \cos (x)-4 \int e^{2 x} \cos (x) d x
\end{aligned}
$$

Adding $4 \int e^{2 x} \cos (x) d x$ to both sides of the equation, dividing by 5 , and adding an integration constant yields the result:

$$
\int e^{2 x} \cos (x) d x=\frac{1}{5} e^{2 x} \sin (x)+\frac{2}{5} e^{2 x} \cos (x)+C
$$

3. Evaluate the integral $\int \sin ^{5}(x) d x$.

Solution: The odd power on $\sin (x)$ indicates that we should rewrite the integrand as $\sin ^{5}(x)=\sin (x) \sin ^{4}(x)$. Then we have

$$
\sin ^{4}(x)=\left(\sin ^{2}(x)\right)^{2}=\left(1-\cos ^{2}(x)\right)^{2}
$$

Thus, the integral may be rewritten as

$$
\int \sin ^{5}(x) d x=\int \sin (x)\left(1-\cos ^{2}(x)\right)^{2} d x
$$

Letting $u=\cos (x)$ and $-d u=\sin (x) d x$ yields

$$
\begin{aligned}
& \int \sin ^{5}(x) d x=\int-\left(1-u^{2}\right)^{2} d u \\
& \int \sin ^{5}(x) d x=\int\left(-1+2 u^{2}-u^{4}\right) d u \\
& \int \sin ^{5}(x) d x=-u+\frac{2}{3} u^{3}-\frac{1}{5} u^{5}+C \\
& \int \sin ^{5}(x) d x=-\cos (x)+\frac{2}{3} \cos ^{3}(x)-\frac{1}{5} \cos ^{5}(x)+C
\end{aligned}
$$

4. Evaluate the integral $\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}$.

Solution: The integration technique is the trigonometric substitution. Let $x=\tan \theta$. Then $d x=\sec ^{2} \theta$. These substitutions yield the result

$$
\begin{aligned}
& \int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=\int \frac{\sec ^{2} \theta}{\tan ^{2} \theta \sqrt{\tan ^{2} \theta+1}} \\
& \int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=\int \frac{\sec ^{2} \theta}{\tan ^{2} \theta \cdot \sec \theta} d \theta \\
& \int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=\int \frac{\sec \theta}{\tan ^{2} \theta} d \theta \\
& \int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
\end{aligned}
$$

If we let $u=\sin \theta$ and $d u=\cos \theta d \theta$ then we obtain

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\int \frac{1}{u^{2}} d u=\left(-\frac{1}{u}\right)+C=-\frac{1}{\sin \theta}+C
$$

Since $x=\tan \theta$ we have $\tan \theta=\frac{x}{1}=\frac{\text { opposite }}{\text { adjacent }}$. If we draw a right triangle then we take x as the side opposite θ and 1 as the side adjacent to θ.

Thus, $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{x}{\sqrt{x^{2}+1}}$ where the hypotenuse is obtained using Pythagoras' Theorem. Finally, the integral is

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}=-\frac{1}{\sin \theta}+C=-\frac{\sqrt{x^{2}+1}}{x}+C .
$$

5. Evaluate $\int \frac{2 x-1}{(x+1)(x+2)} d x$.

Solution: We use the method of partial fractions. The integrand may be decomposed as follows:

$$
\frac{2 x-1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2} .
$$

After clearing denominators we obtain

$$
2 x-1=A(x+2)+B(x+1) .
$$

When $x=-2$ we have $B=5$. When $x=-1$ we have $A=-3$. Thus, the integral is

$$
\begin{aligned}
& \int \frac{2 x-1}{(x+1)(x+2)} d x=\int\left(\frac{-3}{x+1}+\frac{5}{x+2}\right) d x \\
& \int \frac{2 x-1}{(x+1)(x+2)} d x=-3 \ln |x+1|+5 \ln |x+2|+C
\end{aligned}
$$

6. The region between $y=x$ and $y=x^{2}$ is rotated about the axis $x=2$. Compute the volume of the resulting solid.

Solution: The curves intersect when $x^{2}=x$. The solutions to the equation are $x=0$ and $x=1$.

We calculate the volume using shells. The corresponding formula is

$$
V=\int_{a}^{b} 2 \pi(2-x)(f(x)-g(x)) d x
$$

where $a=0, b=2, f(x)=x$, and $g(x)=x^{2}$. Thus, the volume is

$$
\begin{aligned}
& V=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(2 x-3 x^{2}+x^{3}\right) d x \\
&=2 \pi\left[x^{2}-x^{3}+\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{\pi}{2}
\end{aligned}
$$

A vertical cross section (purple line) is at a distance of x from the y-axis. Thus, its distance from the line $x=2$ is $2-x$. This is the radius of the shell.
7. Find the arc length of the curve $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$ on the interval $[1,2]$.

Solution: The arclength formula is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

We have $\frac{d y}{d x}=x^{3}-\frac{1}{4} x^{-3}$. Therefore,

$$
\begin{gathered}
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\left(x^{3}-\frac{1}{4} x^{-3}\right)^{2}}=\sqrt{1+x^{6}-\frac{1}{2}+\frac{1}{16} x^{-6}} \\
=\sqrt{x^{6}+\frac{1}{2}+\frac{1}{16} x^{-6}}=\sqrt{\left(x^{3}+\frac{1}{4} x^{-3}\right)^{2}}=x^{3}+\frac{1}{4} x^{-3}
\end{gathered}
$$

Therefore, the arclength is

$$
L=\int_{1}^{2}\left(x^{3}+\frac{1}{4} x^{-3}\right) d x=\left[\frac{1}{4} x^{4}-\frac{1}{8 x^{2}}\right]_{1}^{2}=\frac{123}{32}
$$

8. Compute T_{3} for the integral $\int_{0}^{1} x^{3} d x$. Give your answer as a reduced fraction with integer numerator and denominator.

Solution: The Trapezoidal rule with $n=3$ is

$$
T_{3}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+f\left(x_{3}\right)\right]
$$

where $\Delta x=\frac{b-a}{n}=\frac{1-0}{3}=\frac{1}{3}$ and $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ and the function is $f(x)=x^{3}$. Therefore, the value of T_{3} is

$$
\begin{aligned}
& T_{3}=\frac{\frac{1}{3}}{2}\left[f(0)+2 f\left(\frac{1}{3}\right)+2 f\left(\frac{2}{3}\right)+f(1)\right] \\
& T_{3}=\frac{1}{6}\left[0+2 \cdot\left(\frac{1}{3}\right)^{3}+2 \cdot\left(\frac{2}{3}\right)^{3}+1^{3}\right] \\
& T_{3}=\frac{5}{18}
\end{aligned}
$$

9. Evaluate $\int_{0}^{+\infty} e^{-2 x} d x$.

Solution: The integral is improper. Thus, we transform it into a limit calculation and evaluate it as follows:

$$
\begin{aligned}
& \int_{0}^{+\infty} e^{-2 x} d x=\lim _{b \rightarrow+\infty} \int_{0}^{b} e^{-2 x} d x \\
& \int_{0}^{+\infty} e^{-2 x} d x=\lim _{b \rightarrow+\infty}\left[-\frac{1}{2} e^{-2 x}\right]_{0}^{b} \\
& \int_{0}^{+\infty} e^{-2 x} d x=\lim _{b \rightarrow+\infty}\left[-\frac{1}{2} e^{-2 b}+\frac{1}{2}\right] \\
& \int_{0}^{+\infty} e^{-2 x} d x=\frac{1}{2}
\end{aligned}
$$

10. Determine whether the integral $\int_{e}^{+\infty} \frac{d x}{x \ln (x)}$ converges or not.

Solution: The integral is improper. Thus, we transform it into a limit calculation:

$$
\int_{e}^{+\infty} \frac{d x}{x \ln (x)}=\lim _{b \rightarrow+\infty} \int_{e}^{b} \frac{d x}{x \ln (x)}
$$

We integrate using $u=\ln (x)$ and $d u=\frac{1}{x} d x$. The limits of integration becomes $u=\ln (e)=1$ and $u=\ln (b)$. Thus, we have

$$
\begin{aligned}
& \int_{e}^{+\infty} \frac{d x}{x \ln (x)}=\lim _{b \rightarrow+\infty} \int_{1}^{\ln (b)} \frac{1}{u} d u \\
& \int_{e}^{+\infty} \frac{d x}{x \ln (x)}=\lim _{b \rightarrow+\infty}[\ln |u|]_{1}^{\ln (b)} \\
& \int_{e}^{+\infty} \frac{d x}{x \ln (x)}=\lim _{b \rightarrow+\infty}[\ln (\ln (b))-\ln (1)] \\
& \int_{e}^{+\infty} \frac{d x}{x \ln (x)}=+\infty
\end{aligned}
$$

Thus, the integral diverges.
11. Find the limit of the sequence $\left\{\frac{\sin \left(\frac{n \pi}{2}\right)}{3^{n}}\right\}$.

Solution: Because $-1 \leq \sin \left(\frac{n \pi}{2}\right) \leq 1$, we have

$$
-\frac{1}{3^{n}} \leq \frac{\sin \left(\frac{n \pi}{2}\right)}{3^{n}} \leq \frac{1}{3^{n}}
$$

for all $n \geq 1$. Since

$$
\lim _{n \rightarrow \infty}-\frac{1}{3^{n}}=0 \text { and } \lim _{n \rightarrow \infty} \frac{1}{3^{n}}=0
$$

by the Squeeze Theorem we have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{3^{n}}=0
$$

12. Find the sum of the series $\sum_{n=3}^{+\infty} \frac{2^{n}+7^{n}}{9^{n}}$.

Solution: The series may be rewritten as

$$
\sum_{n=3}^{+\infty} \frac{2^{n}+7^{n}}{9^{n}}=\sum_{n=3}^{+\infty}\left(\frac{2}{9}\right)^{n}+\sum_{n=3}^{+\infty}\left(\frac{7}{9}\right)^{n}
$$

Each of the series on the right hand side above is a geometric series that converges. The sum is

$$
\sum_{n=3}^{+\infty}\left(\frac{2}{9}\right)^{n}+\sum_{n=3}^{+\infty}\left(\frac{7}{9}\right)^{n}=\frac{\left(\frac{2}{9}\right)^{3}}{1-\frac{2}{9}}+\frac{\left(\frac{7}{9}\right)^{3}}{1-\frac{7}{9}}
$$

13. Determine whether the series $\sum_{n=1}^{+\infty} \frac{n}{2 n+1}$ converges or not.

Solution: We use the Divergence Test.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}
$$

Since the limit is not zero, the series diverges.
14. Determine whether the series $\sum_{n=1}^{+\infty} \frac{\sin (n)}{n^{2}}$ converges or not.

Solution: The sequence $a_{n}=\frac{\sin (n)}{n^{2}}$ has infinitely many positive and infinitely many negative terms. Thus, we test for absolute convergence by considering the series of absolute values:

$$
\sum\left|\frac{\sin (n)}{n^{2}}\right|=\sum \frac{|\sin (n)|}{n^{2}}
$$

Since $0 \leq \frac{|\sin (n)|}{n^{2}} \leq \frac{1}{n^{2}}$ for all $n \geq 1$ and the series $\sum \frac{1}{n^{2}}$ is a convergent p-series $(p=2>1)$, the series $\sum \frac{|\sin (n)|}{n^{2}}$ converges by the Comparison Test. Thus, the series $\sum \frac{\sin (n)}{n^{2}}$ is absolutely convergent and converges.
15. Determine if the series $\sum_{n=1}^{+\infty}\left(\frac{n+1}{3 n}\right)^{n}$ converges or not.

Solution: We use the Root Test.

$$
\rho=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{n+1}{3 n}\right)^{n}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{n+1}{3 n}=\frac{1}{3}
$$

Since $\rho=\frac{1}{3}<1$, the series converges.
16. Find the third degree Taylor polynomial of $f(x)=\sqrt{x}$ centered at $a=4$.

Solution: f and its first three derivatives evaluated at $x=4$ are

$$
\begin{array}{rlrl}
f(x) & =x^{1 / 2} & f(4) & =4^{1 / 2}=2 \\
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} & f^{\prime}(4) & =\frac{1}{2} 4^{-1 / 2}=\frac{1}{4} \\
f^{\prime \prime}(x) & =-\frac{1}{4} x^{-3 / 2} & f^{\prime \prime}(4) & =-\frac{1}{4} 4^{-3 / 2}=-\frac{1}{32} \\
f^{\prime \prime \prime}(x) & =\frac{3}{8} x^{-5 / 2} & f^{\prime \prime \prime}(4) & =\frac{3}{8} 4^{-5 / 2}=\frac{3}{256}
\end{array}
$$

The third order Taylor polynomial of f centered at 4 is

$$
\begin{aligned}
& p_{3}(x)=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)}{2!}(x-4)^{2}+\frac{f^{\prime \prime \prime}(4)}{3!}(x-4)^{3} \\
& p_{3}(x)=2+\frac{1}{4}(x-4)+\frac{-\frac{1}{32}}{2!}(x-4)^{2}+\frac{\frac{3}{256}}{3!}(x-4)^{3} \\
& p_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}
\end{aligned}
$$

17. Determine the interval of convergence for the power series $\sum_{k=1}^{+\infty} k x^{k}$.

(Be sure to check the endpoints of the interval.)

Solution: We use the Ratio Test to find the interval of convergence. Testing for absolute convergence we have

$$
r=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(k+1) x^{k+1}}{k x^{k}}\right|=\lim _{k \rightarrow \infty}|x| \cdot \frac{k+1}{k}=|x| .
$$

According to the Ratio Test, the series will converge when $r=|x|<1$, i.e. $-1<x<1$. However, the test is inconclusive when $r=|x|=1$, i.e. when $x=-1$ or $x=1$.

- When $x=1$, the power series becomes $\sum_{k=1}^{\infty} k$ which diverges.
- When $x=-1$, the power series becomes $\sum_{k=1}^{\infty} k(-1)^{k}$ which diverges.

Thus, the interval of convergence is $-1<x<1$.
18. Find the Maclaurin series expansion of the function $f(x)=\sin \left(3 x^{2}\right)$. Write your answer in summation form.

Solution: The Maclaurin series for $\sin (x)$ is

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Replacing x with $3 x^{2}$ yields

$$
\begin{aligned}
& \sin \left(3 x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(3 x^{2}\right)^{2 k+1}}{(2 k+1)!} \\
& \sin \left(3 x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{3^{2 k+1} x^{4 k+2}}{(2 k+1)!}
\end{aligned}
$$

19. Find the slope of the line tangent to the polar curve $r=1+\sin \theta$ at the point $(1, \pi)$.

Solution: Since $x=r \cos \theta$ and $y=r \sin \theta$ we have

$$
x=(1+\sin \theta) \cos \theta, \quad y=(1+\sin \theta) \sin \theta
$$

The derivatives of x and y with respect to θ are

$$
\begin{aligned}
& \frac{d x}{d \theta}=\cos \theta \cos \theta-(1+\sin \theta) \sin \theta \\
& \frac{d y}{d \theta}=\cos \theta \sin \theta+(1+\sin \theta) \cos \theta
\end{aligned}
$$

The derivatives evaluated at $\theta=\pi$ are

$$
\left.\frac{d x}{d \theta}\right|_{\theta=\pi}=1,\left.\quad \frac{d y}{d \theta}\right|_{\theta=\pi}=-1
$$

Thus, the slope of the line tangent to $r=1+\sin \theta$ at $(r, \theta)=(1, \pi)$ is

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-1}{1}=-1
$$

20. Find a Cartesian equivalent for the polar equation $r=\frac{4}{2 \cos \theta-\sin \theta}$ and sketch the curve.

Solution: Multiplying both sides of the equation by the denominator on the left hand side we obtain

$$
\begin{aligned}
r(2 \cos \theta-\sin \theta) & =4 \\
2 r \cos \theta-r \sin \theta & =4 \\
2 x-y & =4
\end{aligned}
$$

This is the line $y=2 x-4$ which has slope 2 and y-intercept -4 . The plot is shown below.

