Final Exam, Fall 2013

David Cabrera Math 181 – Calculus II University of Illinois Chicago

1. Evaluate $\int x \ln(x) dx$.

Solution: We use Integration by Parts. Letting $u = \ln(x)$ and dv = x dx yields $du = \frac{1}{x} dx$ and $v = \frac{1}{2}x^2$. The Integration by Parts formula is

$$\int u\,dv = uv - \int v\,du.$$

Thus, we have

$$\int x \ln(x) \, dx = \frac{1}{2}x^2 \ln(x) - \int \frac{1}{2}x^2 \cdot \frac{1}{x} \, dx$$
$$\int x \ln(x) \, dx = \frac{1}{2}x^2 \ln(x) - \frac{1}{2}\int x \, dx$$
$$\int x \ln(x) \, dx = \frac{1}{2}x^2 \ln(x) - \frac{1}{4}x^2 + C$$

2. Evaluate the integral $\int e^{2x} \cos(x) dx$.

Solution: We use Integration by Parts. Letting $u = e^{2x}$ and $dv = \cos(x) dx$ yields $du = 2e^{2x} dx$ and $v = \sin(x)$. The Integration by Parts formula is

$$\int u\,dv = uv - \int v\,du.$$

Thus, we have

$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) - \int \sin(x) \cdot 2e^{2x} \, dx$$
$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) - 2 \int e^{2x} \sin(x) \, dx$$

We now use another Integration by Parts. Letting $u = e^{2x}$ and $dv = \sin(x) dx$ yields $du = 2e^{2x} dx$ and $v = -\cos(x)$. Thus, we have

$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) - 2 \int e^{2x} \sin(x) \, dx$$
$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) - 2 \left[-e^{2x} \cos(x) + 2 \int e^{2x} \cos(x) \, dx \right]$$

$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) - 2 \left[-e^{2x} \cos(x) + 2 \int e^{2x} \cos(x) \, dx \right]$$
$$\int e^{2x} \cos(x) \, dx = e^{2x} \sin(x) + 2e^{2x} \cos(x) - 4 \int e^{2x} \cos(x) \, dx$$

Adding $4\int e^{2x}\cos(x) dx$ to both sides of the equation, dividing by 5, and adding an integration constant yields the result:

$$\int e^{2x} \cos(x) \, dx = \frac{1}{5} e^{2x} \sin(x) + \frac{2}{5} e^{2x} \cos(x) + C$$

3. Evaluate the integral $\int \sin^5(x) dx$.

Solution: The odd power on sin(x) indicates that we should rewrite the integrand as $sin^5(x) = sin(x)sin^4(x)$. Then we have

$$\sin^4(x) = (\sin^2(x))^2 = (1 - \cos^2(x))^2$$

Thus, the integral may be rewritten as

$$\int \sin^5(x) \, dx = \int \sin(x) (1 - \cos^2(x))^2 \, dx$$

Letting $u = \cos(x)$ and $-du = \sin(x) \, dx$ yields

$$\int \sin^5(x) \, dx = \int -(1-u^2)^2 \, du$$
$$\int \sin^5(x) \, dx = \int (-1+2u^2-u^4) \, du$$
$$\int \sin^5(x) \, dx = -u + \frac{2}{3}u^3 - \frac{1}{5}u^5 + C$$
$$\int \sin^5(x) \, dx = -\cos(x) + \frac{2}{3}\cos^3(x) - \frac{1}{5}\cos^5(x) + C$$

4. Evaluate the integral $\int \frac{dx}{x^2\sqrt{x^2+1}}$.

Solution: The integration technique is the trigonometric substitution. Let $x = \tan \theta$. Then $dx = \sec^2 \theta$. These substitutions yield the result

$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = \int \frac{\sec^2 \theta}{\tan^2 \theta \sqrt{\tan^2 \theta + 1}}$$
$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = \int \frac{\sec^2 \theta}{\tan^2 \theta \cdot \sec \theta} \, d\theta$$
$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = \int \frac{\sec \theta}{\tan^2 \theta} \, d\theta$$
$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta$$

If we let $u = \sin \theta$ and $du = \cos \theta \, d\theta$ then we obtain

$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta = \int \frac{1}{u^2} \, du = \left(-\frac{1}{u}\right) + C = -\frac{1}{\sin \theta} + C$$

Since $x = \tan \theta$ we have $\tan \theta = \frac{x}{1} = \frac{\text{opposite}}{\text{adjacent}}$. If we draw a right triangle then we take x as the side opposite θ and 1 as the side adjacent to θ .

Thus, $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{x^2+1}}$ where the hypotenuse is obtained using Pythagoras' Theorem. Finally, the integral is

$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}} = -\frac{1}{\sin \theta} + C = -\frac{\sqrt{x^2 + 1}}{x} + C$$

5. Evaluate $\int \frac{2x-1}{(x+1)(x+2)} dx$.

Solution: We use the method of partial fractions. The integrand may be decomposed as follows:

$$\frac{2x-1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}.$$

After clearing denominators we obtain

$$2x - 1 = A(x + 2) + B(x + 1).$$

When x = -2 we have B = 5. When x = -1 we have A = -3. Thus, the integral is

$$\int \frac{2x-1}{(x+1)(x+2)} \, dx = \int \left(\frac{-3}{x+1} + \frac{5}{x+2}\right) \, dx$$
$$\int \frac{2x-1}{(x+1)(x+2)} \, dx = -3\ln|x+1| + 5\ln|x+2| + C$$

6. The region between y = x and $y = x^2$ is rotated about the axis x = 2. Compute the volume of the resulting solid.

Solution: The curves intersect when $x^2 = x$. The solutions to the equation are x = 0 and x = 1.

We calculate the volume using shells. The corresponding formula is

$$V = \int_{a}^{b} 2\pi (2-x)(f(x) - g(x)) \, dx$$

where $a=0,\ b=2,\ f(x)=x,$ and $g(x)=x^2.$ Thus, the volume is

$$V = \int_0^1 2\pi (2-x)(x-x^2) \, dx = 2\pi \int_0^1 (2x-3x^2+x^3) \, dx$$

$$=2\pi\left[x^{2}-x^{3}+\frac{1}{4}x^{4}\right]_{0}^{1}=\frac{\pi}{2}$$

A vertical cross section (purple line) is at a distance of x from the y-axis. Thus, its distance from the line x = 2 is 2 - x. This is the radius of the shell.

7. Find the arc length of the curve $y = \frac{x^4}{4} + \frac{1}{8x^2}$ on the interval [1,2].

Solution: The arclength formula is

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx.$$

We have $\frac{dy}{dx} = x^3 - \frac{1}{4}x^{-3}$. Therefore,

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(x^3 - \frac{1}{4}x^{-3}\right)^2} = \sqrt{1 + x^6 - \frac{1}{2} + \frac{1}{16}x^{-6}}$$
$$= \sqrt{x^6 + \frac{1}{2} + \frac{1}{16}x^{-6}} = \sqrt{\left(x^3 + \frac{1}{4}x^{-3}\right)^2} = x^3 + \frac{1}{4}x^{-3}$$

Therefore, the arclength is

$$L = \int_{1}^{2} \left(x^{3} + \frac{1}{4}x^{-3} \right) \, dx = \left[\frac{1}{4}x^{4} - \frac{1}{8x^{2}} \right]_{1}^{2} = \frac{123}{32}$$

8. Compute T_3 for the integral $\int_0^1 x^3 dx$. Give your answer as a reduced fraction with integer numerator and denominator.

Solution: The Trapezoidal rule with n = 3 is

$$T_3 = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3) \right]$$

where $\Delta x = \frac{b-a}{n} = \frac{1-0}{3} = \frac{1}{3}$ and $\{x_0, x_1, x_2, x_3\} = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ and the function is $f(x) = x^3$. Therefore, the value of T_3 is

$$T_{3} = \frac{\frac{1}{3}}{2} \left[f(0) + 2f\left(\frac{1}{3}\right) + 2f\left(\frac{2}{3}\right) + f(1) \right]$$
$$T_{3} = \frac{1}{6} \left[0 + 2 \cdot \left(\frac{1}{3}\right)^{3} + 2 \cdot \left(\frac{2}{3}\right)^{3} + 1^{3} \right]$$
$$T_{3} = \frac{5}{18}$$

9. Evaluate
$$\int_0^{+\infty} e^{-2x} dx$$
.

Solution: The integral is improper. Thus, we transform it into a limit calculation and evaluate it as follows:

$$\int_{0}^{+\infty} e^{-2x} dx = \lim_{b \to +\infty} \int_{0}^{b} e^{-2x} dx$$
$$\int_{0}^{+\infty} e^{-2x} dx = \lim_{b \to +\infty} \left[-\frac{1}{2} e^{-2x} \right]_{0}^{b}$$
$$\int_{0}^{+\infty} e^{-2x} dx = \lim_{b \to +\infty} \left[-\frac{1}{2} e^{-2b} + \frac{1}{2} \right]$$
$$\int_{0}^{+\infty} e^{-2x} dx = \frac{1}{2}$$

10. Determine whether the integral $\int_{e}^{+\infty} \frac{dx}{x \ln(x)}$ converges or not.

Solution: The integral is improper. Thus, we transform it into a limit calculation:

$$\int_{e}^{+\infty} \frac{dx}{x \ln(x)} = \lim_{b \to +\infty} \int_{e}^{b} \frac{dx}{x \ln(x)}$$

We integrate using $u = \ln(x)$ and $du = \frac{1}{x} dx$. The limits of integration becomes $u = \ln(e) = 1$ and $u = \ln(b)$. Thus, we have

$$\int_{e}^{+\infty} \frac{dx}{x\ln(x)} = \lim_{b \to +\infty} \int_{1}^{\ln(b)} \frac{1}{u} du$$
$$\int_{e}^{+\infty} \frac{dx}{x\ln(x)} = \lim_{b \to +\infty} \left[\ln|u| \right]_{1}^{\ln(b)}$$
$$\int_{e}^{+\infty} \frac{dx}{x\ln(x)} = \lim_{b \to +\infty} \left[\ln(\ln(b)) - \ln(1) \right]$$
$$\int_{e}^{+\infty} \frac{dx}{x\ln(x)} = +\infty$$

Thus, the integral diverges.

11. Find the limit of the sequence $\left\{ -\frac{5}{4} \right\}$

$$\left\{\frac{\sin(\frac{n\pi}{2})}{3^n}\right\}$$

Solution: Because $-1 \leq \sin(\frac{n\pi}{2}) \leq 1$, we have

$$-\frac{1}{3^n} \le \frac{\sin\left(\frac{n\pi}{2}\right)}{3^n} \le \frac{1}{3^n}$$

for all $n \ge 1$. Since

$$\lim_{n\to\infty}\ -\frac{1}{3^n}=0 \ \ \text{and} \ \ \lim_{n\to\infty}\ \frac{1}{3^n}=0$$

by the Squeeze Theorem we have

$$\lim_{n \to \infty} \frac{\sin(\frac{n\pi}{2})}{3^n} = 0$$

12. Find the sum of the series $\sum_{n=3}^{+\infty} \frac{2^n + 7^n}{9^n}$.

Solution: The series may be rewritten as

$$\sum_{n=3}^{+\infty} \frac{2^n + 7^n}{9^n} = \sum_{n=3}^{+\infty} \left(\frac{2}{9}\right)^n + \sum_{n=3}^{+\infty} \left(\frac{7}{9}\right)^n$$

Each of the series on the right hand side above is a geometric series that converges. The sum is

$$\sum_{n=3}^{+\infty} \left(\frac{2}{9}\right)^n + \sum_{n=3}^{+\infty} \left(\frac{7}{9}\right)^n = \frac{\left(\frac{2}{9}\right)^3}{1-\frac{2}{9}} + \frac{\left(\frac{7}{9}\right)^3}{1-\frac{7}{9}}$$

13. Determine whether the series $\sum_{n=1}^{+\infty} \frac{n}{2n+1}$ converges or not.

Solution: We use the Divergence Test.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}.$$

Since the limit is not zero, the series diverges.

14. Determine whether the series $\sum_{n=1}^{+\infty} \frac{\sin(n)}{n^2}$ converges or not.

Solution: The sequence $a_n = \frac{\sin(n)}{n^2}$ has infinitely many positive and infinitely many negative terms. Thus, we test for absolute convergence by considering the series of absolute values:

$$\sum \left| \frac{\sin(n)}{n^2} \right| = \sum \frac{|\sin(n)|}{n^2}.$$

Since $0 \leq \frac{|\sin(n)|}{n^2} \leq \frac{1}{n^2}$ for all $n \geq 1$ and the series $\sum \frac{1}{n^2}$ is a convergent *p*-series (p = 2 > 1), the series $\sum \frac{|\sin(n)|}{n^2}$ converges by the Comparison Test. Thus, the series $\sum \frac{\sin(n)}{n^2}$ is absolutely convergent and converges.

15. Determine if the series $\sum_{n=1}^{+\infty} \left(\frac{n+1}{3n}\right)^n$ converges or not.

Solution: We use the Root Test.

$$\rho = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left[\left(\frac{n+1}{3n} \right)^n \right]^{1/n} = \lim_{n \to \infty} \frac{n+1}{3n} = \frac{1}{3}$$

Since $\rho = \frac{1}{3} < 1$, the series converges.

16. Find the third degree Taylor polynomial of $f(x) = \sqrt{x}$ centered at a = 4.

Solution: f and its first three derivatives evaluated at x = 4 are

$$f(x) = x^{1/2} f(4) = 4^{1/2} = 2$$

$$f'(x) = \frac{1}{2}x^{-1/2} f'(4) = \frac{1}{2}4^{-1/2} = \frac{1}{4}$$

$$f''(x) = -\frac{1}{4}x^{-3/2} f''(4) = -\frac{1}{4}4^{-3/2} = -\frac{1}{32}$$

$$f'''(x) = \frac{3}{8}x^{-5/2} f'''(4) = \frac{3}{8}4^{-5/2} = \frac{3}{256}$$

The third order Taylor polynomial of f centered at 4 is

$$p_{3}(x) = f(4) + f'(4)(x-4) + \frac{f''(4)}{2!}(x-4)^{2} + \frac{f'''(4)}{3!}(x-4)^{3}$$

$$p_{3}(x) = 2 + \frac{1}{4}(x-4) + \frac{-\frac{1}{32}}{2!}(x-4)^{2} + \frac{\frac{3}{256}}{3!}(x-4)^{3}$$

$$p_{3}(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^{2} + \frac{1}{512}(x-4)^{3}$$

17. Determine the interval of convergence for the power series $\sum kx^k$.

(Be sure to check the endpoints of the interval.)

Solution: We use the Ratio Test to find the interval of convergence. Testing for absolute convergence we have

$$r = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(k+1)x^{k+1}}{kx^k} \right| = \lim_{k \to \infty} |x| \cdot \frac{k+1}{k} = |x|.$$

According to the Ratio Test, the series will converge when r = |x| < 1, i.e. -1 < x < 1. However, the test is inconclusive when r = |x| = 1, i.e. when x = -1 or x = 1.

• When x = 1, the power series becomes $\sum_{k=1}^{k} k$ which diverges.

• When x = -1, the power series becomes $\sum_{k=1}^{\infty} k(-1)^k$ which diverges.

Thus, the interval of convergence is -1 < x < 1.

18. Find the Maclaurin series expansion of the function $f(x) = \sin(3x^2)$. Write your answer in summation form.

Solution: The Maclaurin series for sin(x) is

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Replacing x with $3x^2$ yields

$$\sin(3x^2) = \sum_{k=0}^{\infty} (-1)^k \frac{(3x^2)^{2k+1}}{(2k+1)!}$$
$$\sin(3x^2) = \sum_{k=0}^{\infty} (-1)^k \frac{3^{2k+1}x^{4k+2}}{(2k+1)!}$$

19. Find the slope of the line tangent to the polar curve $r = 1 + \sin \theta$ at the point $(1, \pi)$.

Solution: Since $x = r \cos \theta$ and $y = r \sin \theta$ we have

$$x = (1 + \sin \theta) \cos \theta, \quad y = (1 + \sin \theta) \sin \theta.$$

The derivatives of x and y with respect to θ are

$$\frac{dx}{d\theta} = \cos\theta\cos\theta - (1+\sin\theta)\sin\theta$$
$$\frac{dy}{d\theta} = \cos\theta\sin\theta + (1+\sin\theta)\cos\theta$$

The derivatives evaluated at $\theta = \pi$ are

$$\left. \frac{dx}{d\theta} \right|_{\theta=\pi} = 1, \quad \left. \frac{dy}{d\theta} \right|_{\theta=\pi} = -1$$

Thus, the slope of the line tangent to $r = 1 + \sin \theta$ at $(r, \theta) = (1, \pi)$ is

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-1}{1} = -1$$

20. Find a Cartesian equivalent for the polar equation $r = \frac{4}{2\cos\theta - \sin\theta}$ and sketch the curve.

Solution: Multiplying both sides of the equation by the denominator on the left hand side we obtain

$$r(2\cos\theta - \sin\theta) = 4$$
$$2r\cos\theta - r\sin\theta = 4$$
$$2x - y = 4$$

This is the line y = 2x - 4 which has slope 2 and y-intercept -4. The plot is shown below.

