Math 181, Final Exam, Fall 2014

Problem 1 Solution

1. (a) Evaluate the integral $\int \ln (\sqrt{x}) d x$.

Solution: We use a property of logarithms to rewrite the integral as

$$
\int \ln (\sqrt{x}) d x=\frac{1}{2} \int \ln (x) d x .
$$

Letting $u=\ln (x)$ and $d v=d x$ yields $d u=\frac{1}{x} d x$ and $v=x$. Integration by parts yields the result:

$$
\begin{aligned}
& \int \ln (\sqrt{x}) d x=\frac{1}{2} \ln (x) d x \\
& \int \ln (\sqrt{x}) d x=\frac{1}{2}\left(x \ln (x)-\int x \cdot \frac{1}{x} d x\right) \\
& \int \ln (\sqrt{x}) d x=\frac{1}{2}\left(x \ln (x)-\int d x\right) \\
& \int \ln (\sqrt{x}) d x=\frac{1}{2} x \ln (x)-\frac{1}{2} x+C
\end{aligned}
$$

1. (b) Evaluate the integral $\int \frac{x^{2}+2 x}{x^{2}-1} d x$.

Solution: The rational function is improper (the degree of the numerator is \geq the degree of the denominator). Thus, we use long division.

$$
\left.x^{2}-1\right) \begin{array}{r}
\frac{1}{x^{2}+2 x} \\
\frac{x^{2}+1}{2 x+1}
\end{array}
$$

The integral may be rewritten now as

$$
\int \frac{x^{2}+2 x}{x^{2}-1} d x=\int\left(1+\frac{2 x+1}{x^{2}-1}\right) d x=x+\int \frac{2 x+1}{x^{2}-1} d x .
$$

The integrand on the right hand side may be decomposed as follows:

$$
\frac{2 x+1}{x^{2}-1}=\frac{A}{x+1}+\frac{B}{x-1} .
$$

Clearing denominators yields $2 x+1=A(x-1)+B(x+1)$. When $x=1$ we have $B=\frac{3}{2}$. When $x=-1$ we have $A=\frac{1}{2}$. Thus, the integral becomes:

$$
\int \frac{x^{2}+2 x}{x^{2}-1} d x=x+\int\left(\frac{\frac{1}{2}}{x+1}+\frac{\frac{3}{2}}{x-1}\right)=x+\frac{1}{2}|x+1|+\frac{3}{2} \ln |x-1|+C .
$$

1. (c) Evaluate the integral $\int \frac{d x}{4 x^{2}+1}$.

Solution: Let $u=2 x$. Then $\frac{1}{2} d u=d x$ so that

$$
\begin{aligned}
\int \frac{d x}{4 x^{2}+1} & =\int \frac{d x}{(2 x)^{2}+1} \\
& =\int \frac{\frac{1}{2} d u}{u^{2}+1} \\
& =\frac{1}{2} \int \frac{d u}{u^{2}+1} \\
& =\frac{1}{2} \arctan (u)+C \\
& =\frac{1}{2} \arctan (2 x)+C
\end{aligned}
$$

1. (d) Evaluate the integral $\int \sin ^{3}(x) d x$.

Solution: We begin by rewriting the function as follows:

$$
\sin ^{3}(x)=\sin (x) \sin ^{2}(x)=\sin (x)\left(1-\cos ^{2}(x)\right)
$$

Then we let $u=\cos (x)$ so that $-d u=\sin (x) d x$ and we get

$$
\begin{aligned}
\int \sin ^{3}(x) d x & =\int \sin (x)\left(1-\cos ^{2}(x)\right) d x \\
& =-\int\left(1-u^{2}\right) d u \\
& =-u+\frac{u^{3}}{3}+C \\
& =-\cos (x)+\frac{1}{3} \cos ^{3}(x)+C
\end{aligned}
$$

1. (e) Evaluate the integral $\int \frac{d x}{\sqrt{x^{2}-4}}$.

Solution: We begin by letting $x=2 \sec \theta$ so that $d x=2 \sec \theta \tan \theta d \theta$. After substituting into the integral we obtain:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x^{2}-4}} & =\int \frac{2 \sec \theta \tan \theta d \theta}{\sqrt{(2 \sec \theta)^{2}-4}} \\
& =\int \frac{2 \sec \theta \tan \theta}{\sqrt{4 \sec ^{2} \theta-4}} d \theta \\
& =\int \frac{2 \sec \theta \tan \theta}{\sqrt{4 \tan ^{2} \theta}} d \theta \\
& =\int \frac{2 \sec \theta \tan \theta}{2 \tan \theta} d \theta \\
& =\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

Since $x=2 \sec \theta$ and, thus, $\sec \theta=\frac{x}{2}=\frac{\text { hypotenuse }}{\text { adjacent }}$ we can construct a right triangle with hypotenuse x and adjacent side 2 .

From the above figure we obtain $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sqrt{x^{2}-4}}{2}$ where the opposite side was obtain using the Pythageorean Theorem. Therefore, the final answer is

$$
\int \frac{d x}{\sqrt{x^{2}-4}}=\ln \left|\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right|+C
$$

Math 181, Final Exam, Fall 2014

Problem 2 Solution

2. (a) Determine whether the integral converges or diverges. If it converges, compute the integral.

$$
\int_{e}^{\infty} \frac{1}{x \ln (x)} d x
$$

Solution: The integral is improper so we transform it into a limit calculation:

$$
\int_{e}^{\infty} \frac{1}{x \ln (x)} d x=\lim _{b \rightarrow \infty} \int_{e}^{b} \frac{1}{x \ln (x)} d x
$$

Let $u=\ln (x)$ so that $d u=\frac{1}{x} d x$. Then

$$
\begin{aligned}
\int_{e}^{\infty} \frac{1}{x \ln (x)} d x & =\lim _{b \rightarrow \infty} \int_{e}^{b} \frac{1}{x \ln (x)} d x \\
& =\lim _{b \rightarrow \infty} \int_{1}^{\ln (b)} \frac{1}{u} d u \\
& =\lim _{b \rightarrow \infty} \ln (\ln (b)) \\
& =+\infty
\end{aligned}
$$

Thus, the integral diverges.
2. (b) Determine whether the integral converges or diverges. If it converges, compute the integral.

$$
\int_{0}^{\infty} \frac{x}{x^{4}+1} d x
$$

Solution: The integral is improper so we transform it into a limit calculation:

$$
\int_{0}^{\infty} \frac{x}{x^{4}+1} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x}{x^{4}+1} d x
$$

Let $u=x^{2}$ so that $\frac{1}{2} d u=x d x$. Then

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x}{x^{4}+1} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x}{x^{4}+1} d x \\
& =\frac{1}{2} \lim _{b \rightarrow \infty} \int_{0}^{b^{2}} \frac{1}{u^{2}+1} d u \\
& =\frac{1}{2} \lim _{b \rightarrow \infty} \arctan \left(b^{2}\right) \\
& =\frac{1}{2} \cdot \frac{\pi}{2} \\
& =\frac{\pi}{4}
\end{aligned}
$$

Thus, the integral converges and its value is $\frac{\pi}{4}$.

Math 181, Final Exam, Fall 2014

Problem 3 Solution
3. Let \mathcal{R} be the region bounded by the curves $y=0$ and $y=x^{2}+x$ between $x=0$ and $x=1$. Compute the volume of the solid of revolution obtained when \mathcal{R} is rotated about the axis $y=-1$.

Solution: A plot of the region and the axis is shown below.

We use the slicing method to find the volume. The slices are washers and the inner and outer radii are:

$$
r_{i}=1, \quad r_{o}=x^{2}+x+1
$$

noting that the 1 present in both equations is the distance between the x-axis and the axis $y=-1$. Therefore, the volume is:

$$
\begin{aligned}
V & =\pi \int_{a}^{b}\left(r_{o}^{2}-r_{i}^{2}\right) d x \\
& =\pi \int_{0}^{1}\left[\left(x^{2}+x+1\right)^{2}-1^{2}\right] d x \\
& =\pi \int_{0}^{1}\left(x^{4}+2 x^{3}+3 x^{2}+2 x\right) d x \\
& =\pi\left[\frac{x^{5}}{5}+\frac{x^{4}}{2}+x^{3}+x^{2}\right]_{0}^{1} \\
& =\pi\left[\frac{1}{5}+\frac{1}{2}+1+1\right] \\
& =\frac{27 \pi}{10}
\end{aligned}
$$

Math 181, Final Exam, Fall 2014

Problem 4 Solution
4. (a) Determine whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}}
$$

Solution: Since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{3}}=+\infty \neq 0$ the series diverges by the Divergence Test.
4. (b) Determine whether the following series converges or diverges.

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}
$$

Solution: The series is alternating. The function $a_{n}=\frac{1}{\ln (n)}$ is decreasing and approaches 0 as $n \rightarrow \infty$. Therefore, the series converges by the Alternating Series Test.
4. (c) Determine whether the following series converges or diverges.

$$
\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}
$$

Solution: Consider the series

$$
\sum a_{n}=\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2} \quad \text { and } \quad \sum b_{n}=\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}
$$

Both series contain positive terms and we know that $\sum b_{n}$ is a divergent p-series (because $p=\frac{1}{2} \leq 1$). Furthermore,

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n}-2}=1
$$

Thus, since $0<L<\infty$ and $\sum b_{n}$ diverges the series $\sum a_{n}$ diverges by the Limit Comparison Test.

Math 181, Final Exam, Fall 2014
 Problem 5 Solution

5. (a) Find the third Taylor polynomial, $p_{3}(x)$, centered at $a=0$ for the function

$$
f(x)=\sqrt{x+1}
$$

Solution: The function and its first three derivatives evaluated at 0 are:

$$
\begin{array}{rlrl}
f(x) & =(1+x)^{1 / 2} & f(0) & =1 \\
f^{\prime}(x) & =\frac{1}{2}(1+x)^{-1 / 2} & f^{\prime}(0) & =\frac{1}{2} \\
f^{\prime \prime}(x) & =-\frac{1}{4}(1+x)^{-3 / 2} & f^{\prime \prime}(0) & =-\frac{1}{4} \\
f^{\prime \prime \prime}(x) & =\frac{3}{8}(1+x)^{-5 / 2} & f^{\prime \prime \prime}(0) & =\frac{3}{8}
\end{array}
$$

Therefore, the third order Taylor polynomial is

$$
\begin{aligned}
& p_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \\
& p_{3}(x)=1+\frac{1}{2} x-\frac{1}{4 \cdot 2!} x^{2}+\frac{3}{8 \cdot 3!} x^{3} \\
& p_{3}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}
\end{aligned}
$$

5. (b) Find the third Taylor polynomial, $p_{3}(x)$, centered at $a=0$ for the function

$$
f(x)=\frac{1}{1-3 x^{2}}
$$

Solution: We use the fact that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

and replace x with $3 x^{2}$ to obtain

$$
\begin{aligned}
\frac{1}{1-3 x^{2}} & =1+\left(3 x^{2}\right)+\left(3 x^{2}\right)^{2}+\left(3 x^{2}\right)^{3}+\cdots \\
& =1+3 x^{2}+9 x^{4}+27 x^{6}+\cdots
\end{aligned}
$$

Thus, the third order Taylor polynomial is

$$
p_{3}(x)=1+3 x^{2}
$$

5. (c) Find the third Taylor polynomial, $p_{3}(x)$, centered at $a=0$ for the function

$$
f(x)=x e^{x}
$$

Solution: We use the fact that

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

and multiply by x to obtain

$$
\begin{aligned}
x e^{x} & =x\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right) \\
& =x+x^{2}+\frac{x^{3}}{2!}+\frac{x^{4}}{3!}+\cdots
\end{aligned}
$$

Thus, the third order Taylor polynomial is

$$
p_{3}(x)=x+x^{2}+\frac{x^{3}}{2!}
$$

Math 181, Final Exam, Fall 2014
 Problem 6 Solution

6 . The function $f(x)$ is defined by the power series:

$$
f(x)=\sum_{n=1}^{\infty} n 5^{n} x^{n}
$$

(a) Find the radius of convergence of the power series.
(b) Find $f^{\prime \prime}(0)$.
(c) Does the series converge at $x=-\frac{1}{5}$?

Solution:

(a) We use the Ratio Test to determine when the series converges absolutely.

$$
\begin{aligned}
r & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1) 5^{n+1} x^{n+1}}{n 5^{n} x^{n}}\right| \\
& =5|x| \lim _{n \rightarrow \infty} \frac{n+1}{n} \\
& =5|x|
\end{aligned}
$$

We know that, by the Ratio Test, the series converges if $r<1$. Thus, we need $5|x|<1$ or $|x|<\frac{1}{5}$. Therefore, the radius of convergence is $\frac{1}{5}$.
(b) The series can be expanded as follows:

$$
\begin{aligned}
f(x)=\sum_{n=1}^{\infty} n 5^{n} x^{n} & =5 x+2 \cdot 5^{2} x^{2}+3 \cdot 5^{3} x^{3}+\cdots \\
& =5 x+50 x^{2}+375 x^{3}+\cdots
\end{aligned}
$$

The first and second derivatives of f are:

$$
\begin{aligned}
f^{\prime}(x) & =5+100 x+1125 x^{2}+\cdots \\
f^{\prime \prime}(x) & =100+2250 x+\cdots
\end{aligned}
$$

When evaluated at $x=0$ we have

$$
f^{\prime \prime}(0)=100+2250 \cdot 0+\cdots=100
$$

because the higher order terms in the series will evaluate to 0 .
(c) When $x=-\frac{1}{5}$ we have

$$
\sum_{n=1}^{\infty} n 5^{n} x^{n}=\sum_{n=1}^{\infty} n 5^{n}\left(-\frac{1}{5}\right)^{n}=\sum_{n=1}^{\infty} n(-1)^{n}
$$

The series diverges by the Divergence Test because

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n(-1)^{n} \text { does not exist }
$$

Math 181, Final Exam, Fall 2014

Problem 7 Solution

7. The equation of a curve \mathcal{C} is given in polar coordinates as

$$
r=2 \cos \theta \quad \text { for } 0 \leq \theta \leq 2 \pi
$$

(a) Rewrite the equation in Cartesian coordinates.
(b) Find the Cartesian coordinates (x, y) of all the points on the curve at which the tangent to the curve is horizontal.

Solution:

(a) We begin by multiplying both sides of the given equation by r to obtain

$$
r^{2}=2 r \cos \theta
$$

We then use the fact that $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta$ to obtain the equation

$$
x^{2}+y^{2}=2 x
$$

While this is perfectly sufficient as an answer, it would be best to further rewrite the equation in order to solve part (b). Subtracting $2 x$ from both sides yields the result

$$
x^{2}-2 x+y^{2}=0
$$

Then completing the square on the x terms gives us

$$
(x-1)^{2}+y^{2}=1
$$

We see that this is a circle of radius 1 centered at $(1,0)$.
(b) The horizontal tangent lines to the circle will occur at the points $(1,1)$ and $(1,-1)$.

