Math 210, Exam 1, Fall 2005
 Problem 1 Solution

1. Consider the triangle with vertices

$$
A=(1,-3,-2), \quad B=(2,0,-4), \quad C=(6,-2,-5) .
$$

(a) Find the area of this triangle.
(b) Determine whether or not it is a right triangle.

Solution:

(a) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{A B}=\langle 1,3,-2\rangle$ and $\overrightarrow{B C}=\langle 4,-2,-1\rangle$, which represents the area of the parallelogram spanned by the two vectors. The cross product of these two vector is computed as follows:

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{B C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 3 & -2 \\
4 & -2 & -1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{cc}
3 & -2 \\
-2 & -1
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
1 & -2 \\
4 & -1
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
1 & 3 \\
4 & -2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(3)(-1)-(-2)(-2)]-\hat{\mathbf{j}}[(1)(-1)-(4)(-2)]+\hat{\mathbf{k}}[(1)(-2)-(4)(3)] \\
& \overrightarrow{\mathbf{n}}=-7 \hat{\mathbf{\imath}}-7 \hat{\mathbf{j}}-14 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle-7,-7,-14\rangle
\end{aligned}
$$

Thus, the area of the triangle is:

$$
\begin{aligned}
A & =\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{B C}\| \\
A & =\frac{1}{2} \sqrt{(-7)^{2}+(-7)^{2}+(-14)^{2}} \\
A & =\frac{1}{2} \sqrt{294} \\
A & =\frac{7 \sqrt{6}}{2}
\end{aligned}
$$

(b) We note that the dot product of $\overrightarrow{A B}$ and $\overrightarrow{B C}$ is:

$$
\begin{aligned}
& \overrightarrow{A B} \cdot \overrightarrow{B C}=\langle 1,3,-2\rangle \cdot\langle 4,-2,-1\rangle \\
& \overrightarrow{A B} \cdot \overrightarrow{B C}=(1)(4)+(3)(-2)+(-2)(-1) \\
& \overrightarrow{A B} \cdot \overrightarrow{B C}=0
\end{aligned}
$$

Since the dot product is 0 , we know that the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$ are orthogonal. Thus, triangle $A B C$ is a right triangle.

Math 210, Exam 1, Fall 2005
 Problem 2 Solution

2. Find an equation for the plane which contains the point $(2,-1,5)$ and the line

$$
\frac{x+1}{4}=\frac{y-4}{2}=z-1
$$

Solution: To find an equation for the plane we need two more points that lie in the plane, which we obtain from the equations for the line. The point $(x, y, z)=(-1,4,1)$ is on the line because

$$
\frac{-1+1}{4}=\frac{4-4}{2}=1-1=0
$$

The point $(x, y, z)=(3,6,2)$ is also on the line because

$$
\frac{3+1}{4}=\frac{6-4}{2}=2-1=1
$$

Let $A=(2,-1,5), B=(-1,4,1)$, and $C=(3,6,2)$. In order to find an equation for the plane containing $A_{2} B$, and C we need a vector $\overrightarrow{\mathbf{n}}$ perpendicular to it. We let $\overrightarrow{\mathbf{n}}$ be the cross product of $\overrightarrow{A B}=\langle-3,5,-4\rangle$ and $\overrightarrow{B C}=\langle 4,2,1\rangle$ because these vectors lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{B C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-3 & 5 & -4 \\
4 & 2 & 1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{cc}
5 & -4 \\
2 & 1
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
-3 & -4 \\
4 & 1
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
-3 & 5 \\
4 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(5)(1)-(2)(-4)]-\hat{\mathbf{j}}[(-3)(1)-(4)(-4)]+\hat{\mathbf{k}}[(-3)(2)-(4)(5)] \\
& \overrightarrow{\mathbf{n}}=13 \hat{\mathbf{i}}-13 \hat{\mathbf{j}}-26 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 13,-13,-26\rangle
\end{aligned}
$$

Using $A=(2,-1,5)$ as a point in the plane, we have:

$$
13(x-2)-13(y+1)-26(z-5)=0
$$

as an equation for the plane containing the given point and line.

Math 210, Exam 1, Fall 2005
 Problem 3 Solution

3. For the position function $\overrightarrow{\mathbf{r}}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find the velocity $\overrightarrow{\mathbf{v}}(t)$, the speed $v(t)$, and the acceleration $\overrightarrow{\mathbf{a}}(t)$.

Solution: The velocity, acceleration, and speed functions are:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}(t) & =\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle \\
\overrightarrow{\mathbf{a}}(t) & =\overrightarrow{\mathbf{v}}^{\prime}(t)=\langle 0,2,6 t\rangle \\
v(t) & =\|\overrightarrow{\mathbf{v}}(t)\| \\
& =\sqrt{1^{2}+(2 t)^{2}+\left(3 t^{2}\right)^{2}} \\
& =\sqrt{1+4 t^{2}+9 t^{4}}
\end{aligned}
$$

Math 210, Exam 1, Fall 2005
 Problem 4 Solution

4. Sketch the level sets for the function $f(x, y)=4 x^{2}+4 y^{2}+2$ which correspond to the function values 2,4 , and 10 .

Solution: The level sets of $f(x, y)=4 x^{2}+4 y^{2}+2$ are the curves obtained by setting $f(x, y)$ to a constant C.

$$
C=4 x^{2}+4 y^{2}+2 \quad \Longleftrightarrow \quad x^{2}+y^{2}=\frac{C-2}{4}
$$

These curves are circles centered at $(0,0)$ with radius $\frac{\sqrt{C-2}}{2}$.

Note that $C=10$ is the green circle with radius $\sqrt{2}, C=4$ is the blue circle with radius $\frac{\sqrt{2}}{2}$, and $C=0$ is the origin (because the radius is 0).

Math 210, Exam 1, Fall 2010
 Problem 5 Solution

5. Evaluate the following limit, or show it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

Solution: The function $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$ as the point is not in the domain of f. If the limit exists, the value of the limit should be independent of the path taken to $(0,0)$. Let's choose Path 1 to be the path $y=0, x \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x(0)}{x^{2}+0^{2}}=\lim _{x \rightarrow 0^{+}} \frac{0}{x^{2}}=0
$$

Let's choose Path 2 to be the path $y=x, x \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x(x)}{x^{2}+(x)^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

Thus, since we get two different limits along two different paths to $(0,0)$, the limit does not exist.

Math 210, Exam 1, Fall 2005
 Problem 6 Solution

6. For the function $f(x, y)=e^{2 x} \cos (y)$, find the partial derivatives $f_{y}, f_{x y}$, and $f_{y y}$.

Solution: The first partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
& f_{x}=2 e^{2 x} \cos (y) \\
& f_{y}=-e^{2 x} \sin (y)
\end{aligned}
$$

The second partial derivative $f_{x y}$ is

$$
\begin{aligned}
f_{x y} & =\left(f_{x}\right)_{y} \\
f_{x y} & =\frac{\partial}{\partial y}\left(2 e^{2 x} \cos (y)\right) \\
f_{x y} & =-2 e^{2 x} \sin (y)
\end{aligned}
$$

The second partial derivative $f_{y y}$ is

$$
\begin{aligned}
f_{y y} & =\left(f_{y}\right)_{y} \\
f_{y y} & =\frac{\partial}{\partial y}\left(-e^{2 x} \sin (y)\right) \\
f_{y y} & =-e^{2 x} \cos (y)
\end{aligned}
$$

Math 210, Exam 1, Fall 2005

Problem 7 Solution

7. Points A, B and C are marked on the curve shown below. At which of these points is the curvature greatest?

Solution: Curvature is defined as the rate of change of the unit tangent vector $\overrightarrow{\mathbf{T}}$ with respect to arclength s.

$$
\kappa=\left\|\frac{d \overrightarrow{\mathbf{T}}}{d s}\right\|
$$

By inspection it appears that $\overrightarrow{\mathbf{T}}$, which is parallel to the line tangent to the curve, is changing most rapidly at point B.

