Math 210, Exam 1, Fall 2008 Problem 1 Solution

1. Let $P=(-1,4,1), Q=(1,2,9)$, and $R=(5,10,1)$.
(a) Find the lengths of the sides $P Q$ and $P R$ of the triangle $P Q R$.
(b) Find the interior angle at the vertex P of the triangle $P Q R$.
(c) Find the equation of the plane containing P, Q, and R.
(d) Find the area of the triangle $P Q R$.

Solution:

(a) The vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are obtained by subtracting coordinates as follows:

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1-(-1), 2-4,9-1\rangle=\langle 2,-2,8\rangle \\
& \overrightarrow{P R}=\langle 5-(-1), 10-4,1-1\rangle=\langle 6,6,0\rangle
\end{aligned}
$$

The lengths of sides $P Q$ and $P R$ are the magnitudes of the above vectors:

$$
\begin{aligned}
& \|\overrightarrow{P Q}\|=\sqrt{2^{2}+(-2)^{2}+8^{2}}=\sqrt{72}=6 \sqrt{2} \\
& \|\overrightarrow{P R}\|=\sqrt{6^{2}+6^{2}+0^{2}}=\sqrt{72}=6 \sqrt{2}
\end{aligned}
$$

(b) Use the dot product to determine the angle:

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{\|\overrightarrow{P Q}\|\|\overrightarrow{P R}\|} \\
\cos \theta & =\frac{(2)(6)+(-2)(6)+(8)(0)}{(6 \sqrt{2})(6 \sqrt{2})} \\
\cos \theta & =0
\end{aligned}
$$

Therefore, the angle is $\theta=\frac{\pi}{2}$.
(c) A vector perpendicular to the plane is the cross product of $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{P Q} \times \overrightarrow{P R} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & -2 & 8 \\
6 & 6 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{cc}
-2 & 8 \\
6 & 0
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
2 & 8 \\
6 & 0
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
2 & -2 \\
6 & 6
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(-2)(0)-(8)(6)]-\hat{\mathbf{j}}[(2)(0)-(8)(6)]+\hat{\mathbf{k}}[(2)(6)-(-2)(6)] \\
& \overrightarrow{\mathbf{n}}=-48 \hat{\mathbf{i}}+48 \hat{\mathbf{j}}+24 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle-48,48,24\rangle
\end{aligned}
$$

Using $P=(-1,4,1)$ as a point on the plane, we have:

$$
-48(x+1)+48(y-4)+24(z-1)=0
$$

(d) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{P Q}$ and $\overrightarrow{P R}$, which represents the area of the parallelogram spanned by the two vectors:

$$
\begin{aligned}
A & =\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{P R}\| \\
A & =\frac{1}{2} \sqrt{(-48)^{2}+48^{2}+24^{2}} \\
A & =\frac{1}{2}(72) \\
A & =36
\end{aligned}
$$

Math 210, Exam 1, Fall 2008
 Problem 2 Solution

2. Consider a particle traveling along the curve $\overrightarrow{\mathbf{r}}(t)=\left\langle t, 2 e^{t}, e^{2 t}\right\rangle$.
(a) Calculate the position, velocity, speed and acceleration of the particle at $t=1$.
(b) What is the length of $\overrightarrow{\mathbf{r}}(t)$ between $t=1$ and $t=2$?
(c) Find an equation for the tangent line to $\overrightarrow{\mathbf{r}}(t)$ at $t=0$.
(d) Calculate the curvature of $\overrightarrow{\mathbf{r}}(t)$ at $t=0$.

Solution:

(a) The velocity and acceleration are:

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1,2 e^{t}, 2 e^{2 t}\right\rangle \\
& \overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\left\langle 0,2 e^{t}, 4 e^{2 t}\right\rangle
\end{aligned}
$$

At $t=1$ we have:

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}(1) & =\left\langle 1,2 e, e^{2}\right\rangle \\
\overrightarrow{\mathbf{v}}(1) & =\left\langle 1,2 e, 2 e^{2}\right\rangle \\
\overrightarrow{\mathbf{a}}(1) & =\left\langle 0,2 e, 4 e^{2}\right\rangle \\
v(1) & =\sqrt{1^{2}+(2 e)^{2}+\left(2 e^{2}\right)^{2}} \\
& =\sqrt{1+4 e^{2}+4 e^{4}}
\end{aligned}
$$

(b) The length of the curve is:

$$
\begin{aligned}
L & =\int_{1}^{2}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
L & =\int_{1}^{2} \sqrt{1+4 e^{2 t}+4 e^{4 t}} d t \\
L & =\int_{1}^{2} \sqrt{\left(1+2 e^{2 t}\right)^{2}} d t \\
L & =\int_{1}^{2}\left(1+2 e^{2 t}\right) d t \\
L & =\left[t+e^{2 t}\right]_{1}^{2} \\
L & =\left(2+e^{4}\right)-\left(1+e^{2}\right) \\
L & =1+e^{4}-e^{2}
\end{aligned}
$$

(c) The tangent line equation is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{L}}(t)=\overrightarrow{\mathbf{r}}(0)+t \overrightarrow{\mathbf{r}}^{\prime}(0) \\
& \overrightarrow{\mathbf{L}}(t)=\langle 0,2,1\rangle+t\langle 1,2,2\rangle
\end{aligned}
$$

(d) The curvature at $t=0$ is:

$$
\begin{aligned}
\kappa(0) & =\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0)\right\|^{3}} \\
\kappa(0) & =\frac{\|\langle 1,2,2\rangle \times\langle 0,2,4\rangle\|}{\|\langle 1,2,2\rangle\|^{3}} \\
\kappa(0) & =\frac{\|\langle 4,-4,2\rangle\|}{3^{3}} \\
\kappa(0) & =\frac{6}{27} \\
\kappa(0) & =\frac{2}{9}
\end{aligned}
$$

Math 210, Exam 1, Fall 2008
 Problem 3 Solution

3. Evaluate the limits or determine they do not exist:
(a) $\lim _{(x, y) \rightarrow(3,4)} \frac{y-3 x}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}$

Solution:

(a) The function $f(x, y)=\frac{y-3 x}{x^{2}+y^{2}}$ is continuous at $(3,4)$. Thus, we can evaluate the limit using substitution:

$$
\lim _{(x, y) \rightarrow(3,4)} \frac{y-3 x}{x^{2}+y^{2}}=\frac{4-3(3)}{3^{2}+4^{2}}=\frac{-5}{25}=-\frac{1}{5}
$$

(b) We show that the limit does not exist by computing the limit of $f(x, y)$ along two different paths that approach $(0,0)$.
(i) For the first path we approach $(0,0)$ along the x-axis from the right. In this case, we have $y=0$ and $x \rightarrow 0^{+}$. The limit is then:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2}+0^{2}}{x^{2}+0^{2}}=2
$$

(ii) For the second path we approach $(0,0)$ along the y-axis from above. In this case, we have $x=0$ and $y \rightarrow 0^{+}$. The limit is then:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}=\lim _{y \rightarrow 0^{+}} \frac{2(0)^{2}+y^{2}}{0^{2}+y^{2}}=1
$$

Since we get two different limits, the limit does not exist.

