Math 210, Exam 1, Fall 2010
 Problem 1 Solution

1. Do the following computations.
(a) Compute $\langle 1,2,3\rangle \cdot\langle-2,0,1\rangle$.
(b) Compute $\langle 1,-1,3\rangle \times\langle-2,-3,1\rangle$.
(c) Find a normal vector to the plane described by $7 x+2 y-3 z$.
(d) Determine if the equations $x-y+2 z=1$ and $-x+y-2 z=3$ describe parallel planes, and give a reason.
(e) If $P=(4,2,-3)$ and $Q=(2,1,5)$, express the vector $\overrightarrow{P Q}$ in terms of the standard unit vectors $\hat{\mathbf{1}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$.

Solution:

(a) $\langle 1,2,3\rangle \cdot\langle-2,0,1\rangle=(1)(-2)+(2)(0)+(3)(1)=1$
(b) $\langle 1,-1,3\rangle \times\langle-2,-3,1\rangle=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 3 \\ -2 & -3 & 1\end{array}\right|=\langle 8,-7,-5\rangle$
(c) Note that the $7 x+2 y-3 z$ is missing an equal sign and a number on the right hand side of the equal sign. In any case, a vector normal to the plane is $\overrightarrow{\mathbf{n}}=\langle 7,2,-3\rangle$
(d) The vectors normal to the planes are $\overrightarrow{\mathbf{n}}_{1}=\langle 1,-1,2\rangle$ and $\overrightarrow{\mathbf{n}}_{2}=\langle-1,1,-2\rangle$, respectively. The vectors are parallel because they are scalar multiples of one another. In fact, $\overrightarrow{\mathbf{n}}_{1}=-\overrightarrow{\mathbf{n}}_{2}$. Thus, the planes are parallel to each other.
(e) $\overrightarrow{P Q}=\langle 2-4,1-2,5-(-3)\rangle=\langle-2,-1,8\rangle=-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+8 \hat{\mathbf{k}}$

Math 210, Exam 1, Fall 2010
 Problem 2 Solution

2. Consider the three points $P=(2,-1,3), Q=(2,1,-2)$, and $R=(1,1,0)$ in \mathbb{R}^{3}.
(a) Find an equation for the plane which contains P, Q and R.
(b) Find the area of the triangle with vertices at P, Q and R.

Solution:

(a) A vector perpendicular to the plane is the cross product of $\overrightarrow{P Q}=\langle 0,2,-5\rangle$ and $\overrightarrow{Q R}=\langle-1,0,2\rangle$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{P Q} \times \overrightarrow{Q R} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0 & 2 & -5 \\
-1 & 0 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{cc}
2 & -5 \\
0 & 2
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
0 & -5 \\
-1 & 2
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{1}}[(2)(2)-(0)(-5)]-\hat{\mathbf{j}}[(0)(2)-(-1)(-5)]+\hat{\mathbf{k}}[(0)(0)-(-1)(2)] \\
& \overrightarrow{\mathbf{n}}=4 \hat{\mathbf{\imath}}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 4,5,2\rangle
\end{aligned}
$$

Using $P=(2,-1,3)$ as a point on the plane, we have:

$$
4(x-2)+5(y+1)+2(z-3)=0
$$

(b) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{P Q}$ and $\overrightarrow{Q R}$, which represents the area of the parallelogram spanned by the two vectors:

$$
\begin{aligned}
A & =\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{Q R}\| \\
A & =\frac{1}{2} \sqrt{4^{2}+5^{2}+2^{2}} \\
A & =\frac{1}{2} \sqrt{45} \\
A & =\frac{3 \sqrt{5}}{2}
\end{aligned}
$$

Math 210, Exam 1, Fall 2010
 Problem 3 Solution

3. Let c be the curve given by $\overrightarrow{\mathbf{c}}(t)=\langle\cos 2 t, 3 t-1, \sin 2 t\rangle$.
(a) Find parametric equations for the tangent line to c at $t=\frac{\pi}{4}$.
(b) Find the length of the curve c between $t=-\pi$ and $t=\pi$.
(c) Find the curvature of c at $t=0$.

Solution: We need the first two derivatives of $\overrightarrow{\mathbf{c}}(t)$.

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}^{\prime}(t) & =\langle-2 \sin (2 t), 3,2 \cos (2 t)\rangle \\
\overrightarrow{\mathbf{c}}^{\prime \prime}(t) & =\langle-4 \cos (2 t), 0,-4 \sin (2 t)\rangle
\end{aligned}
$$

(a) The vector form of the tangent line at $t=\frac{\pi}{4}$ is:

$$
\overrightarrow{\mathbf{L}}(t)=\overrightarrow{\mathbf{c}}\left(\frac{\pi}{4}\right)+t \overrightarrow{\mathbf{c}}^{\prime}\left(\frac{\pi}{4}\right)
$$

Evaluating $\overrightarrow{\mathbf{c}}(t)$ and $\overrightarrow{\mathbf{c}}^{\prime}(t)$ at $t=\frac{\pi}{4}$ we have:

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}\left(\frac{\pi}{4}\right) & =\left\langle\cos \frac{\pi}{2}, 3\left(\frac{\pi}{4}\right)-1, \sin \frac{\pi}{2}\right\rangle=\left\langle 0, \frac{3 \pi}{4}-1,1\right\rangle \\
\overrightarrow{\mathbf{c}}^{\prime}\left(\frac{\pi}{4}\right) & =\left\langle-2 \sin \frac{\pi}{2}, 3,2 \cos \frac{\pi}{2}\right\rangle=\langle-2,3,0\rangle
\end{aligned}
$$

At $t=\frac{\pi}{4}$, we have $\overrightarrow{\mathbf{c}}\left(\frac{\pi}{4}\right)=\left\langle\cos \frac{\pi}{2}, 3\left(\frac{\pi}{4}\right)-1, \sin \frac{\pi}{2}\right\rangle=\left\langle 0, \frac{3 \pi}{4}-1,1\right\rangle$. Therefore, the vector form of the tangent line is:

$$
\overrightarrow{\mathbf{L}}(t)=\left\langle 0, \frac{3 \pi}{4}-1,1\right\rangle+t\langle-2,3,0\rangle
$$

and the corresponding parametric equations are:

$$
x=-2 t, \quad y=\frac{3 \pi}{4}-1+3 t, \quad z=1
$$

(b) The length of the curve is:

$$
\begin{aligned}
L & =\int_{-\pi}^{\pi}\left\|\overrightarrow{\mathbf{c}}^{\prime}(t)\right\| d t \\
L & =\int_{-\pi}^{\pi}\|\langle-2 \sin (2 t), 3,2 \cos (2 t)\rangle\| d t \\
L & =\int_{-\pi}^{\pi} \sqrt{4 \sin ^{2}(2 t)+9+4 \cos ^{2}(2 t)} d t \\
L & =\int_{-\pi}^{\pi} \sqrt{4+9} d t \\
L & =2 \pi \sqrt{13}
\end{aligned}
$$

(c) The curvature at $t=0$ is:

$$
\begin{aligned}
& \kappa(0)=\frac{\left\|\overrightarrow{\mathbf{c}}^{\prime}(0) \times \overrightarrow{\mathbf{c}}^{\prime \prime}(0)\right\|}{\left\|\overrightarrow{\mathbf{c}}^{\prime}(0)\right\|^{3}} \\
& \kappa(0)=\frac{\|\langle 0,3,2\rangle \times\langle-4,0,0\rangle\|}{\|\langle 0,3,2\rangle\|^{3}} \\
& \kappa(0)=\frac{\|\langle 0,-8,12\rangle\|}{\|\langle 0,3,2\rangle\|^{3}} \\
& \kappa(0)=\frac{4 \sqrt{13}}{(\sqrt{13})^{3}} \\
& \kappa(0)=\frac{4}{13}
\end{aligned}
$$

Math 210, Exam 1, Fall 2010
 Problem 4 Solution

4. Find an equation for the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=12$ at the point $(2,2,2)$.

Solution: First, we note that there is a mistake in the problem. The point $(2,2,2)$ is not on the surface. To rectify this error, we change the equation of the surface to

$$
x^{2}+2 y^{2}-z^{2}=8
$$

Let $F(x, y, z)=x^{2}+2 y^{2}-z^{2}$. An equation for the tangent plane is:

$$
F_{x}(2,2,2)(x-2)+F_{y}(2,2,2)(y-2)+F_{z}(2,2,2)(z-2)=0
$$

The partial derivatives of F are:

$$
\begin{aligned}
& F_{x}=2 x \\
& F_{y}=4 y \\
& F_{z}=-2 z
\end{aligned}
$$

Evaluating at $(2,2,2)$ we get:

$$
F_{x}(2,2,2)=4, \quad F_{y}(2,2,2)=8, \quad F_{z}(2,2,2)=-4
$$

Thus, an equation for the tangent plane is:

$$
4(x-2)+8(y-2)-4(z-2)=0
$$

Math 210, Exam 1, Fall 2010
 Problem 5 Solution

5. Find the linearization of the function $f(x, y)=x \cos (\pi y)+y e^{x}$ at the point $(1,1)$.

Solution: The linearization of f at $(1,1)$ has the equation:

$$
L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)
$$

The partial derivatives of f are:

$$
\begin{aligned}
& f_{x}=\cos (\pi y)+y e^{x} \\
& f_{y}=-\pi x \sin (\pi y)+e^{x}
\end{aligned}
$$

Evaluating f and the partial derivatives at $(1,1)$ we get:

$$
f(1,1)=-1+e, \quad f_{x}(1,1)=-1+e, \quad f_{y}(1,1)=e
$$

Thus, the linearization is:

$$
L(x, y)=-1+e+(-1+e)(x-1)+e(y-1)
$$

Math 210, Exam 1, Fall 2010
 Problem 6 Solution

6. Let $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$. Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Solution: The function $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$ is not continuous at $(0,0)$ as the point is not in the domain of f. If the limit exists, the value of the limit should be independent of the path taken to $(0,0)$. Let's choose Path 1 to be the path $y=0, x \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x^{2}+0^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x^{2}}=1
$$

Let's choose Path 2 to be the path $x=0, y \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}=\lim _{y \rightarrow 0^{+}} \frac{0^{2}}{0^{2}+y^{2}}=\lim _{y \rightarrow 0^{+}} \frac{0}{y^{2}}=0
$$

Thus, since we get two different limits along two different paths to $(0,0)$, the limit does not exist.

