Math 210, Exam 1, Fall 2011
 Problem 1 Solution

1. Consider the three points $P=(5,2,-1), Q=(1,4,1), R=(1,2,3)$ in \mathbb{R}^{3}.
(a) Find an equation for the plane which contains P, Q and R.
(b) Find the area of the triangle with vertices at P, Q and R.
(c) Find the angle between $P Q$ and $P R$.

Solution:

(a) A vector perpendicular to the plane is the cross product of $\overrightarrow{P Q}=\langle-4,2,2\rangle$ and $\overrightarrow{Q R}=\langle 0,-2,2\rangle$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{P Q} \times \overrightarrow{Q R} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-4 & 2 & 2 \\
0 & -2 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{cc}
2 & 2 \\
-2 & 2
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
-4 & 2 \\
0 & 2
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
-4 & 2 \\
0 & -2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(2)(2)-(2)(-2)]-\hat{\mathbf{j}}[(-4)(2)-(2)(0)]+\hat{\mathbf{k}}[(-4)(-2)-(2)(0)] \\
& \overrightarrow{\mathbf{n}}=8 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}+8 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 8,8,8\rangle
\end{aligned}
$$

Using $P=(5,2,-1)$ as a point on the plane, we have:

$$
8(x-5)+8(y-2)+8(z+1)=0
$$

(b) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{P Q}$ and $\overrightarrow{Q R}$, which represents the area of the parallelogram spanned by the two vectors:

$$
\begin{aligned}
& A=\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{Q R}\| \\
& A=\frac{1}{2} \sqrt{8^{2}+8^{2}+8^{2}} \\
& A=4 \sqrt{3}
\end{aligned}
$$

(c) The angle θ between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ can be found using the dot product. That is,

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{P Q} \bullet \overrightarrow{P R}}{\|\overrightarrow{P Q}\|\|\overrightarrow{P R}\|} \\
\cos \theta & =\frac{\langle-4,2,2\rangle \bullet\langle-4,0,4\rangle}{\|\langle-4,2,2\rangle\|\|\langle-4,0,4\rangle\|} \\
\cos \theta & =\frac{(-4)(-4)+(2)(0)+(2)(4)}{\sqrt{(-4)^{2}+2^{2}+2^{2}} \sqrt{(-4)^{2}+0^{2}+4^{2}}} \\
\cos \theta & =\frac{24}{\sqrt{24} \sqrt{32}} \\
\cos \theta & =\frac{\sqrt{3}}{2} \\
\theta & =\frac{\pi}{6}
\end{aligned}
$$

Math 210, Exam 1, Fall 2011
 Problem 2 Solution

2. A particle moves along the space curve $\overrightarrow{\mathbf{r}}(t)=\cos (2 t) \hat{\mathbf{i}}+(3 t-1) \hat{\mathbf{j}}+\sin (2 t) \hat{\mathbf{k}}$.
(a) Find the velocity, speed, and acceleration of the particle (as functions of t).
(b) Find the principal unit normal vector at $t=0$.

Solution:

(a) The velocity, speed, and acceleration of the particle are:

$$
\begin{aligned}
\text { velocity } & =\overrightarrow{\mathbf{r}}^{\prime}(t)=-2 \sin (2 t) \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \cos (2 t) \hat{\mathbf{k}} \\
\text { acceleration } & =\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=-4 \cos (2 t) \hat{\mathbf{i}}-4 \sin (2 t) \hat{\mathbf{k}} \\
\text { speed } & =\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|=\sqrt{(-2 \sin (2 t))^{2}+3^{2}+(2 \cos (2 t))^{2}} \\
& =\sqrt{4 \sin ^{2}(2 t)+9+4 \cos ^{2}(2 t)} \\
& =\sqrt{4+9} \\
& =\sqrt{13}
\end{aligned}
$$

(b) The principal unit normal vector at $t=0$ is defined as

$$
\overrightarrow{\mathbf{N}}(0)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(0)}{\left\|\overrightarrow{\mathbf{T}}^{\prime}(0)\right\|}
$$

In order to compute this quantity, we must compute the unit tangent vector $\overrightarrow{\mathbf{T}}(t)$ which is defined as a unit vector in the direction of $\overrightarrow{\mathbf{r}}^{\prime}(t)$. Thus, then unit tangent vector and its derivative are

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}(t) & =\frac{\overrightarrow{\mathbf{r}}^{\prime}(t)}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|}=\frac{1}{\sqrt{13}}\langle-2 \sin (2 t), 3,2 \cos (2 t)\rangle \\
\overrightarrow{\mathbf{T}}^{\prime}(t) & =\frac{1}{\sqrt{13}}\langle-4 \cos (2 t), 0,-4 \sin (2 t)\rangle
\end{aligned}
$$

At $t=0$ these vectors are

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}^{\prime}(0) & =\frac{1}{\sqrt{13}}\langle 0,3,2\rangle, \\
\left\|\overrightarrow{\mathbf{T}}^{\prime}(0)\right\| & =\frac{1}{\sqrt{13}} \sqrt{0^{2}+3^{2}+2^{2}}=1
\end{aligned}
$$

Therefore, the unit normal vector at $t=0$ is

$$
\overrightarrow{\mathbf{N}}(0)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(0)}{\left\|\overrightarrow{\mathbf{T}}^{\prime}(0)\right\|}=\frac{1}{\sqrt{13}}\langle 0,3,2\rangle
$$

Math 210, Exam 1, Fall 2011
 Problem 3 Solution

3. Let $f(x, y, z)=\sqrt{x y+2 x z+3 y z}$.
(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$.
(b) Let $x=u v, y=u+2 v$, and $z=-v^{2}$. Compute $\frac{\partial f}{\partial u}$ when $u=2$ and $v=-1$.

Solution:

(a) The first order partial derivatives of f are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{y+2 z}{2 \sqrt{x y+2 x z+3 y z}} \\
& \frac{\partial f}{\partial y}=\frac{x+3 z}{2 \sqrt{x y+2 x z+3 y z}} \\
& \frac{\partial f}{\partial z}=\frac{2 x+3 y}{2 \sqrt{x y+2 x z+3 y z}}
\end{aligned}
$$

(b) Using the Chain Rule, the partial derivative $\frac{\partial f}{\partial u}$ is

$$
\frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial u}
$$

The partial derivatives $\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}$, and $\frac{\partial z}{\partial u}$ are

$$
\frac{\partial x}{\partial u}=v, \quad \frac{\partial y}{\partial u}=1, \quad \frac{\partial z}{\partial u}=0
$$

and at the point $(u, v)=(2,-1)$ take on the values

$$
\left.\frac{\partial x}{\partial u}\right|_{(2,-1)}=-1,\left.\quad \frac{\partial y}{\partial u}\right|_{(2,-1)}=1,\left.\quad \frac{\partial z}{\partial u}\right|_{(2,-1)}=0
$$

When $u=2$ and $v=-1$, the values of x, y, and z are

$$
x=(2)(-1)=-2, \quad y=2+2(-1)=0, \quad z=-(-1)^{2}=-1
$$

The values of the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$ (computed in part (a)) at the point $(x, y, z)=(-2,0,-1)$ are

$$
\begin{aligned}
\left.\frac{\partial f}{\partial x}\right|_{(-2,0,-1)} & =\frac{0+2(-1)}{2 \sqrt{(-2)(0)+2(-2)(-1)+3(0)(-1)}}=-\frac{1}{2} \\
\left.\frac{\partial f}{\partial y}\right|_{(-2,0,-1)} & =\frac{-2+3(-1)}{2 \sqrt{(-2)(0)+2(-2)(-1)+3(0)(-1)}}=-\frac{5}{4} \\
\left.\frac{\partial f}{\partial z}\right|_{(-2,0,-1)} & =\frac{2(-2)+3(0)}{2 \sqrt{(-2)(0)+2(-2)(-1)+3(0)(-1)}}=-1 .
\end{aligned}
$$

Finally, the value of $\frac{\partial f}{\partial u}$ at $(u, v)=(2,-1)$ is

$$
\frac{\partial f}{\partial u}=\left(-\frac{1}{2}\right)(-2)+\left(-\frac{5}{4}\right)(1)+(-1)(0)=-\frac{1}{4}
$$

Math 210, Exam 1, Fall 2011
 Problem 4 Solution

4. Let $f(x, y)=\frac{2 x(y+1)}{4 x^{2}+5(y+1)^{2}}$.
(a) Evaluate $\lim _{(x, y) \rightarrow(0,-1)} f(x, y)$ or show that it doesn't exist.
(b) Evaluate $\lim _{(x, y) \rightarrow(0,1)} f(x, y)$ or show that it doesn't exist.

Solution: Note that $f(x, y)$ is continuous at all $(x, y) \neq(0,-1)$. Therefore, the limit in part (a) must be approached using the two-path test and the limit in part (b) can be evaluated via substitution.
(a) Let Path 1 be the straight-line path: $y=-1, x \rightarrow 0^{+}$. The limit of $f(x, y)$ along this path is

$$
\lim _{(x, y) \rightarrow(0,-1)} f(x, y)=\lim _{x \rightarrow 0^{+}} \frac{2 x(-1+1)}{4 x^{2}+5(-1+1)^{2}}=\lim _{x \rightarrow 0^{+}} \frac{0}{4 x^{2}}=0
$$

Let Path 2 be the straight-line path: $y=x-1, x \rightarrow 0^{+}$. The limit of $f(x, y)$ along this path is

$$
\lim _{(x, y) \rightarrow(0,-1)} f(x, y)=\lim _{x \rightarrow 0^{+}} \frac{2 x(x)}{4 x^{2}+5(x)^{2}}=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2}}{9 x^{2}}=\frac{2}{9}
$$

Thus, since the limits are different along two different paths, the limit does not exist.
(b) Upon plugging $x=0$ and $y=1$ into the function we find that

$$
\lim _{(x, y) \rightarrow(0,1)} f(x, y)=f(0,1)=\frac{2(0)(1)}{4(0)^{2}+5(1+1)^{2}}=0
$$

Math 210, Exam 1, Fall 2011
 Problem 5 Solution

5. Find the arc length of the curve $\overrightarrow{\mathbf{c}}(t)=\left\langle 2 t-1,2 \ln (t), 1-\frac{1}{2} t^{2}\right\rangle$ from $t=1$ to $t=e$.

Solution: The arc length formula is

$$
L=\int_{a}^{b}\left\|\overrightarrow{\mathbf{c}}^{\prime}(t)\right\| d t
$$

The derivative $\overrightarrow{\mathbf{c}}^{\prime}(t)$ and its magnitude are

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}^{\prime}(t) & =\left\langle 2, \frac{2}{t},-t\right\rangle \\
\left\|\overrightarrow{\mathbf{c}}^{\prime}(t)\right\| & =\sqrt{2^{2}+\left(\frac{2}{t}\right)^{2}+(-t)^{2}} \\
& =\sqrt{4+\frac{4^{2}}{t}+t^{2}} \\
& =\sqrt{\left(t+\frac{2}{t}\right)^{2}} \\
& =t+\frac{2}{t}
\end{aligned}
$$

Therefore, the arc length of the given curve is

$$
\begin{aligned}
L & =\int_{1}^{e}\left(t+\frac{2}{t}\right) d t \\
& =\left[\frac{1}{2} t^{2}+2 \ln (t)\right]_{1}^{e}, \\
& =\left[\frac{1}{2} e^{2}+2 \ln (e)\right]-\left[\frac{1}{2}(1)^{2}+2 \ln (1)\right], \\
& =\frac{1}{2} e^{2}+\frac{3}{2}
\end{aligned}
$$

