Math 210, Exam 1, Fall 2012
 Problem 1 Solution

1. Let $\mathbf{r}(t)=\langle 4 \cos (2 t), 5 \sin (2 t), 3 \cos (2 t)\rangle$.
(a) Find the velocity and acceleration of $\mathbf{r}(t)$, given as a function of t.
(b) Find the principal unit normal vector when $t=\pi$.

Solution:

(a) The velocity and acceleration vectors are the first and second derivatives of $\mathbf{r}(t)$, respectively.

$$
\mathbf{r}^{\prime}(t)=\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle, \mathbf{r}^{\prime \prime}(t)=\langle-16 \cos (2 t),-20 \sin (2 t),-12 \sin (2 t)\rangle
$$

(b) By definition, the principal unit normal vector is

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

where

$$
\begin{aligned}
& \mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} \\
& \mathbf{T}(t)=\frac{\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle}{\sqrt{(-8 \sin (2 t))^{2}+(10 \cos (2 t))^{2}+(-6 \sin (2 t))^{2}}} \\
& \mathbf{T}(t)=\frac{\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle}{\sqrt{64 \sin ^{2}(2 t)+100 \cos ^{2}(2 t)+36 \sin ^{2}(2 t)}} \\
& \mathbf{T}(t)=\frac{\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle}{\sqrt{100 \sin ^{2}(2 t)+100 \cos ^{2}(2 t)}} \\
& \mathbf{T}(t)=\frac{\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle}{\sqrt{100}} \\
& \mathbf{T}(t)=\frac{\langle-8 \sin (2 t), 10 \cos (2 t),-6 \sin (2 t)\rangle}{10} \\
& \mathbf{T}(t)=\left\langle-\frac{4}{5} \sin (2 t), \cos (2 t),-\frac{3}{5} \sin (2 t)\right\rangle
\end{aligned}
$$

is the unit tangent vector. Thus, the principal unit normal vector is

$$
\begin{aligned}
& \mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|} \\
& \mathbf{N}(t)=\frac{\left\langle-\frac{8}{5} \cos (2 t),-2 \sin (2 t),-\frac{6}{5} \cos (2 t)\right\rangle}{\sqrt{\left(-\frac{8}{5} \cos (2 t)\right)^{2}+(-2 \sin (2 t))^{2}+\left(-\frac{6}{5} \cos (2 t)\right)^{2}}} \\
& \mathbf{N}(t)=\frac{\left\langle-\frac{8}{5} \cos (2 t),-2 \sin (2 t),-\frac{6}{5} \cos (2 t)\right\rangle}{\sqrt{\frac{64}{25} \cos ^{2}(2 t)+4 \sin ^{2}(2 t)+\frac{36}{25} \sin ^{2}(2 t)}} \\
& \mathbf{N}(t)=\frac{\left\langle-\frac{8}{5} \cos (2 t),-2 \sin (2 t),-\frac{6}{5} \cos (2 t)\right\rangle}{\sqrt{4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)}} \\
& \mathbf{N}(t)=\frac{\left\langle-\frac{8}{5} \cos (2 t),-2 \sin (2 t),-\frac{6}{5} \cos (2 t)\right\rangle}{\sqrt{4}} \\
& \mathbf{N}(t)=\frac{\left\langle-\frac{8}{5} \cos (2 t),-2 \sin (2 t),-\frac{6}{5} \cos (2 t)\right\rangle}{2} \\
& \mathbf{N}(t)=\left\langle-\frac{4}{5} \cos (2 t),-\sin (2 t),-\frac{3}{5} \cos (2 t)\right\rangle
\end{aligned}
$$

When $t=\pi$ we have

$$
\mathbf{N}(\pi)=\left\langle-\frac{4}{5}, 0,-\frac{3}{5}\right\rangle
$$

Math 210, Exam 1, Fall 2012
 Problem 2 Solution

2. Consider the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.
(a) Graph the curve $\mathbf{r}(t)$ for $0 \leq t \leq 2 \pi$. Indicate in your graph the endpoints and the direction as t increases.
(b) Find the speed of $\mathbf{r}(t)$ when $t=0$ and the unit tangent vector $\mathbf{T}(t)$ when $t=\frac{\pi}{2}$.

Solution:

(a) A plot of the curve is shown below:

The endpoints of the curve are $(1,0,0)$ and $(1,0,2 \pi)$. The direction is counterclockwise as viewed from above.
(b) By definition, the speed is $v(t)=\left\|\mathbf{r}^{\prime}(t)\right\|=\|\langle-\sin (t), \cos (t), 1\rangle\|=\sqrt{\sin ^{2}(t)+\cos ^{2}(t)+1}=$ $\sqrt{2}$. At $t=0$ we have

$$
v(0)=\sqrt{2}
$$

since the speed is constant. By definition, the unit tangent vector is $\mathbf{T}(t)=\mathbf{r}^{\prime}(t) /\left\|\mathbf{r}^{\prime}(t)\right\|=$ $\frac{1}{\sqrt{2}}\langle-\sin (t), \cos (t), 1\rangle$. Thus, at $t=\frac{\pi}{2}$ we have

$$
\mathbf{T}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\langle-1,0,1\rangle
$$

Math 210, Exam 1, Fall 2012
 Problem 3 Solution

3. Let $\mathbf{r}_{1}(t)=\left\langle t^{2}, t^{2}-2 t, t+2\right\rangle$ and $\mathbf{r}_{2}(s)=\langle s,-1,2 s+1\rangle$.
(a) Find the point or points, if any, at which the curves $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(s)$ intersect.
(b) Find the area of the parallelogram spanned by the two vectors $\mathbf{r}_{1}^{\prime}(0)$ and $\mathbf{r}_{1}^{\prime}(2)$.

Solution:

(a) The curves will intersect if there exist numbers t and s such that $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(s)$. This will occur if there is a solution to the system of equations:

$$
t^{2}=s, \quad t^{2}-2 t=-1, \quad t+2=2 s+1
$$

The second equation leads to $t^{2}-2 t+1=0$ and, thus, $t=1$. Plugging this into the first and third equations gives $s=1$ in both cases. Therefore, the point of intersection is

$$
\mathbf{r}_{1}(1)=\langle 1,-1,3\rangle
$$

(b) The derivative of $\mathbf{r}_{1}(t)$ is $\mathbf{r}_{1}^{\prime}(t)=\langle 2 t, 2 t-2,1\rangle$. The parallelogram is then spanned by

$$
\mathbf{u}=\mathbf{r}_{1}^{\prime}(0)=\langle 0,-2,1\rangle \quad \text { and } \quad \mathbf{v}=\mathbf{r}_{1}^{\prime}(2)=\langle 4,2,1\rangle
$$

The area of this parallelogram is:

$$
\begin{aligned}
A & =\|\mathbf{u} \times \mathbf{v}\| \\
A & =\|\langle 0,-2,1\rangle \times\langle 4,2,1\rangle\| \\
A & =\|\langle-4,4,8\rangle\| \\
A & =\sqrt{(-4)^{2}+4^{2}+8^{2}} \\
A & =4 \sqrt{6}
\end{aligned}
$$

Math 210, Exam 1, Fall 2012
 Problem 4 Solution

4. Find the equation of the line through the point $P=(1,-3,2)$ that is perpendicular to the vectors $\langle 1,0,2\rangle$ and $\langle 2,1,0\rangle$.

Solution: The vector equation for a line containing the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$ is

$$
\mathbf{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \mathbf{v}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

The vector \mathbf{v} is the cross product of $\langle 1,0,2\rangle$ and $\langle 2,1,0\rangle$ since \mathbf{v} will be perpendicular to both vectors.

$$
\mathbf{v}=\langle 1,0,2\rangle \times\langle 2,1,0\rangle=\langle-2,4,1\rangle
$$

Therefore, the equation for the line is

$$
\mathbf{r}(t)=\langle 1,-3,2\rangle+t\langle-2,4,1\rangle
$$

Math 210, Exam 1, Fall 2012
 Problem 5 Solution

5. Show that the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}$ does not exist.

Solution: We use the two-path test to show that the limit does not exist. Let the first path be the line $y=0$ as $x \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x \cdot 0}{3 x^{2}+0^{2}}=0
$$

Now let the second path be the line $y=x$ as $x \rightarrow 0^{+}$. The limit along this path is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x \cdot x}{3 x^{2}+x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{4 x^{2}}=\frac{1}{4}
$$

Since the limits are different along different paths, the limit does not exist.

Math 210, Exam 1, Fall 2012
 Problem 6 Solution

6. Find the length of the curve $\mathbf{r}(t)=\langle 2 \cos (3 t), 3 t, 2 \sin (3 t)\rangle$ between $(2,0,0)$ and $(2,2 \pi, 0)$.

Solution: The length of the curve is computed using the formula

$$
L=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

The derivative $\mathbf{r}^{\prime}(t)$ and its magnitude are:

$$
\begin{aligned}
\left\|\mathbf{r}^{\prime}(t)\right\| & =\|\langle-6 \sin (3 t), 3,6 \cos (3 t)\rangle\| \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{36 \sin ^{2}(3 t)+9+36 \cos ^{2}(3 t)} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{45}
\end{aligned}
$$

The endpoints of the curve correspond to $t=0$ and $t=\frac{2 \pi}{3}$, respectively. Therefore, the length is

$$
L=\int_{0}^{2 \pi / 3} \sqrt{45} d t=\frac{2 \pi \sqrt{45}}{3}=2 \pi \sqrt{5}
$$

