Math 210, Exam 1, Practice Fall 2009
 Problem 1 Solution

1. Let $A=(1,-1,2), B=(0,-1,1), C=(2,1,1)$.
(a) Find the vector equation of the plane through A, B, C.
(b) Find the area of the triangle with these three vertices.

Solution:

(a) In order to find the vector equation of the plane we need a point that lies in the plane and a vector $\overrightarrow{\mathbf{n}}$ perpendicular to it. We let $\overrightarrow{\mathbf{n}}$ be the cross product of $\overrightarrow{A B}=\langle-1,0,-1\rangle$ and $\overrightarrow{B C}=\langle 2,2,0\rangle$ because these vectors lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{B C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-1 & 0 & -1 \\
2 & 2 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
-1 & -1 \\
2 & 0
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
-1 & 0 \\
2 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(0)(0)-(-1)(2)]-\hat{\mathbf{j}}[(-1)(0)-(-1)(2)]+\hat{\mathbf{k}}[(-1)(2)-(0)(2)] \\
& \overrightarrow{\mathbf{n}}=2 \hat{\mathbf{\imath}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 2,-2,-2\rangle
\end{aligned}
$$

Using $A=(1,-1,2)$ as a point in the plane, we have:

$$
\langle x-1, y+1, z-2\rangle \cdot\langle 2,-2,-2\rangle=0
$$

as the vector equation for the plane containing A, B, C.
(b) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{A B}$ and $\overrightarrow{B C}$, which represents the area of the parallelogram spanned by the two vectors:

$$
\begin{aligned}
A & =\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{B C}\| \\
A & =\frac{1}{2} \sqrt{2^{2}+(-2)^{2}+(-2)^{2}} \\
A & =\frac{1}{2} \sqrt{12} \\
A & =\sqrt{3}
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 2 Solution

2. Find the vector of length one in the direction of $\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}$ where $\overrightarrow{\mathbf{v}}=\langle 7,5,3\rangle$ and $\overrightarrow{\mathbf{u}}=$ $\langle 4,5,7\rangle$.

Solution: First, the vector $\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}$ is:

$$
\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}=\langle 7,5,3\rangle-\langle 4,5,7\rangle=\langle 3,0,-4\rangle
$$

Next, we convert this vector into a unit vector by multiplying by the reciprocal of its magnitude.

$$
\begin{aligned}
& \hat{\mathbf{e}}=\frac{1}{\|\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}\|}(\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}) \\
& \hat{\mathbf{e}}=\frac{1}{\sqrt{3^{2}+0^{2}+(-4)^{2}}}\langle 3,0,-4\rangle \\
& \hat{\mathbf{e}}=\frac{1}{5}\langle 3,0,-4\rangle \\
& \hat{\mathbf{e}}=\left\langle\frac{3}{5}, 0,-\frac{4}{5}\right\rangle
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 3 Solution

3. Let $\overrightarrow{\mathbf{r}}(t)=\left\langle 3 t-1, e^{t}, \cos (t)\right\rangle$.
(a) Find the unit tangent vector $\overrightarrow{\mathrm{T}}$ to the path $\overrightarrow{\mathrm{r}}(t)$ at $t=0$.
(b) Find the speed, $\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|$ at $t=0$.

Solution:

(a) The derivative of $\overrightarrow{\mathbf{r}}(t)$ is $\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 3, e^{t},-\sin t\right\rangle$. At $t=0$ we have $\overrightarrow{\mathbf{r}}^{\prime}(0)=\langle 3,1,0\rangle$. The unit tangent vector at $t=0$ is then:

$$
\begin{aligned}
& \overrightarrow{\mathbf{T}}(0)=\frac{1}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0)\right\|} \overrightarrow{\mathbf{r}}^{\prime}(0) \\
& \overrightarrow{\mathbf{T}}(0)=\frac{1}{\sqrt{3^{2}+1^{2}+0^{2}}}\langle 3,1,0\rangle \\
& \overrightarrow{\mathbf{T}}(0)=\frac{1}{\sqrt{10}}\langle 3,1,0\rangle \\
& \overrightarrow{\mathbf{T}}(0)=\left\langle\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}, 0\right\rangle
\end{aligned}
$$

(b) The speed at $t=0$ is $\left\|\overrightarrow{\mathbf{r}}^{\prime}(0)\right\|=\sqrt{10}$.

Math 210, Exam 1, Practice Fall 2009
 Problem 4 Solution

4. Given a point $P=(0,1,2)$ and the vectors $\overrightarrow{\mathbf{u}}=\langle 1,0,1\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 2,3,0\rangle$, find
(a) an equation for the plane that contains P and whose normal vector is perpendicular to the two vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$,
(b) a set of parametric equations of the line through P and in the direction of $\overrightarrow{\mathbf{v}}$.

Solution:

(a) In order to find an equation for the plane we need a point that lies in the plane and a vector $\overrightarrow{\mathbf{n}}$ perpendicular to it. We let $\overrightarrow{\mathbf{n}}$ be the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 0 & 1 \\
2 & 3 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
1 & 1 \\
2 & 0
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
1 & 0 \\
2 & 3
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(0)(0)-(3)(1)]-\hat{\mathbf{j}}[(1)(0)-(1)(2)]+\hat{\mathbf{k}}[(1)(3)-(2)(0)] \\
& \overrightarrow{\mathbf{n}}=-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle-3,2,3\rangle
\end{aligned}
$$

Using $P=(0,1,2)$ as a point in the plane, we have:

$$
-3(x-0)+2(y-1)+3(z-2)=0
$$

as the equation for the plane.
(b) A set of parametric equations of the line through $P=(0,1,2)$ and in the direction of $\overrightarrow{\mathbf{v}}=\langle 2,3,0\rangle$ is:

$$
x=0+2 t, \quad y=1+3 t, \quad z=2+0 t
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 5 Solution

5. Find the speed and arclength of the path $\overrightarrow{\mathbf{r}}(t)=\langle 3 \cos t, 4 \cos t, 5 \sin t\rangle$ where $0 \leq t \leq 2$.

Solution: The derivative of $\overrightarrow{\mathbf{r}}(t)$ is $\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle-3 \sin t,-4 \sin t, 5 \cos t\rangle$. Speed is the magnitude of $\overrightarrow{\mathbf{r}}^{\prime}(t)$.

$$
\begin{aligned}
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{(-3 \sin t)^{2}+(-4 \sin t)^{2}+(5 \cos t)^{2}} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{9 \sin ^{2} t+16 \sin ^{2} t+25 \cos ^{2} t} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{25 \sin ^{2} t+25 \cos ^{2} t} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{25} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =5
\end{aligned}
$$

The arclength of the path is then:

$$
\begin{aligned}
L & =\int_{0}^{2}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
L & =\int_{0}^{2} 5 d t \\
L & =\left.5 t\right|_{0} ^{2} \\
L & =10
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 6 Solution

6 . Find the curvature at $t=0$ for the curve $\overrightarrow{\mathbf{r}}(t)=e^{t} \hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}}+t \hat{\mathbf{k}}$.
Solution: The curvature formula we will use is:

$$
\kappa(0)=\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0)\right\|^{3}}
$$

The first two derivatives of $\overrightarrow{\mathbf{r}}(t)=\left\langle e^{t}, t^{2}, t\right\rangle$ are:

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(t) & =\left\langle e^{t}, 2 t, 1\right\rangle \\
\overrightarrow{\mathbf{r}}^{\prime \prime}(t) & =\left\langle e^{t}, 2,0\right\rangle
\end{aligned}
$$

We now evaluate the derivatives at $t=0$.

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(0) & =\left\langle e^{0}, 2(0), 1\right\rangle=\langle 1,0,1\rangle \\
\overrightarrow{\mathbf{r}}^{\prime \prime}(0) & =\left\langle e^{0}, 2,0\right\rangle=\langle 1,2,0\rangle
\end{aligned}
$$

The cross product of these vectors is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=\left|\begin{array}{lll}
\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 0 & 1 \\
1 & 2 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=\hat{\mathbf{i}}\left|\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=\hat{\mathbf{i}}[(0)(0)-(1)(2)]-\hat{\mathbf{j}}[(1)(0)-(1)(1)]+\hat{\mathbf{k}}[(1)(2)-(1)(0)] \\
& \overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=\langle-2,1,2\rangle
\end{aligned}
$$

We can now compute the curvature.

$$
\begin{aligned}
& \kappa(0)=\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(0)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(0)\right\|^{3}} \\
& \kappa(0)=\frac{\|\langle-2,1,2\rangle\|}{\|\langle 1,0,1\rangle\|^{3}} \\
& \kappa(0)=\frac{\sqrt{(-2)^{2}+1^{2}+2^{2}}}{\left(\sqrt{1^{2}+0^{2}+1^{2}}\right)^{3}} \\
& \kappa(0)=\frac{\sqrt{9}}{(\sqrt{2})^{3}} \\
& \kappa(0)=\frac{3}{2 \sqrt{2}}
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 7 Solution

7. Let $\overrightarrow{\mathbf{r}}(t)=\langle t, \cos t, \sin t\rangle$.
(a) Find the velocity vector, $\overrightarrow{\mathbf{r}}^{\prime}(t)$.
(b) Find the acceleration vector, $\overrightarrow{\mathbf{r}}^{\prime \prime}(t)$.
(c) Find the component of acceleration in the direction of the velocity when $t=0$.

Solution:

(a) The velocity vector is $\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle 1,-\sin t, \cos t\rangle$.
(b) The acceleration vector is $\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle 0,-\cos t,-\sin t\rangle$.
(c) At $t=0$, the velocity and acceleration vectors are:

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}(0)=\langle 1,-\sin 0, \cos 0\rangle=\langle 1,0,1\rangle \\
& \overrightarrow{\mathbf{a}}(0)=\langle 0,-\cos 0,-\sin 0\rangle=\langle 0,-1,0\rangle
\end{aligned}
$$

The acceleration can be decomposed into tangential and normal components.

$$
\overrightarrow{\mathbf{a}}=a_{T} \overrightarrow{\mathbf{T}}+a_{N} \overrightarrow{\mathbf{N}}
$$

By definition, the component of acceleration in the direction of the velocity is a_{T}. The formula and subsequent computation are shown below.

$$
\begin{aligned}
& a_{T}=\frac{\overrightarrow{\mathbf{a}}(0) \cdot \overrightarrow{\mathbf{v}}(0)}{\|\overrightarrow{\mathbf{v}}(0)\|} \\
& a_{T}=\frac{\langle 0,-1,0\rangle \cdot\langle 1,0,1\rangle}{\|\langle 1,0,1\rangle\|} \\
& a_{T}=\frac{(0)(1)+(-1)(0)+(0)(1)}{\sqrt{1^{2}+0^{2}+1^{2}}} \\
& a_{T}=0
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009
 Problem 8 Solution

8. Let $f(x, y)=\frac{1}{2} x^{2}-y$. Sketch the three level curves on which $f(x, y)=-1$ or 0 or 1 in the square $-2 \leq x \leq 2,-2 \leq y \leq 2$.

Solution: The level curves of $f(x, y)=\frac{1}{2} x^{2}-y$ are the curves obtained by setting $f(x, y)$ to a constant C.

$$
C=\frac{1}{2} x^{2}-y \quad \Longleftrightarrow \quad y=\frac{1}{2} x^{2}-C
$$

These curves are parabolas with vertices at $(0,-C)$ and are sketched below for the values $C=-1,0,1$.

Math 210, Exam 1, Practice Fall 2009 Problem 9 Solution

9. Find the partial derivatives

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \text { and } \quad \frac{\partial^{2} f}{\partial x \partial y}
$$

for the function $f(x, y)=2 x+3 x y-5 y^{2}$.
Solution: The first partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2+3 y \\
& \frac{\partial f}{\partial y}=3 x-10 y
\end{aligned}
$$

The second mixed partial derivative $\frac{\partial^{2} f}{\partial x \partial y}$ is

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}(3 x-10 y) \\
\frac{\partial^{2} f}{\partial x \partial y} & =3
\end{aligned}
$$

Math 210, Exam 1, Practice Fall 2009 Problem 10 Solution

10. Find the partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}} \quad \text { and } \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

for the function $f(x, y)=e^{2 x} \cos (2 y)$.
Solution: The first partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 e^{2 x} \cos (2 y) \\
& \frac{\partial f}{\partial y}=-2 e^{2 x} \sin (2 y)
\end{aligned}
$$

The second partial derivative $\frac{\partial^{2} f}{\partial x^{2}}$ is

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \\
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(2 e^{2 x} \cos (2 y)\right) \\
\frac{\partial^{2} f}{\partial x^{2}} & =4 e^{2 x} \cos (2 y)
\end{aligned}
$$

The second partial derivative $\frac{\partial^{2} f}{\partial y^{2}}$ is

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \\
& \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(-2 e^{2 x} \sin (2 y)\right) \\
& \frac{\partial^{2} f}{\partial y^{2}}=-4 e^{2 x} \cos (2 y)
\end{aligned}
$$

