Math 210, Exam 1, Spring 2001 Problem 1 Solution

1. Given two vectors $\overrightarrow{\mathbf{a}}=\langle-3,2,2\rangle, \overrightarrow{\mathbf{b}}=\langle 4,3,-1\rangle$.
(a) Find a unit vector in the same direction as $\overrightarrow{\mathrm{a}}$.
(b) Find the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathbf{b}}$.

Solution:

(a) A unit vector in the same direction as $\overrightarrow{\mathbf{a}}$ is:

$$
\begin{aligned}
& \hat{\mathbf{e}}_{\mathbf{a}}=\frac{1}{\|\overrightarrow{\mathbf{a}}\|} \overrightarrow{\mathbf{a}} \\
& \hat{\mathbf{e}}_{\mathbf{a}}=\frac{1}{\sqrt{(-3)^{2}+2^{2}+2^{2}}}\langle-3,2,2\rangle \\
& \hat{\mathbf{e}}_{\mathbf{a}}=\frac{1}{\sqrt{17}}\langle-3,2,2\rangle \\
& \hat{\mathbf{e}}_{\mathbf{a}}=\left\langle-\frac{3}{\sqrt{17}}, \frac{2}{\sqrt{17}}, \frac{2}{\sqrt{17}}\right\rangle
\end{aligned}
$$

(b) We use the dot product to find the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathbf{b}}$.

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{\|\overrightarrow{\mathbf{a}}\|\|\overrightarrow{\mathbf{b}}\|} \\
\cos \theta & =\frac{(-3)(4)+(2)(3)+(2)(-1)}{\sqrt{(-3)^{2}+2^{2}+2^{2}} \sqrt{4^{2}+3^{2}+(-1)^{2}}} \\
\cos \theta & =\frac{-8}{\sqrt{17} \sqrt{26}} \\
\theta & =\cos ^{-1}\left(-\frac{8}{\sqrt{17} \sqrt{26}}\right)
\end{aligned}
$$

Math 210, Exam 1, Spring 2001
 Problem 2 Solution

2. Find the equation of the plane determined by the three points $(0,0,0),(1,0,0)$, and $(2,3,4)$.

Solution: The equation of the plane will be of the form $a x+b y+c z=d$. Knowing that the point $(0,0,0)$ is in the plane tells us the value of d.

$$
a(0)+b(0)+c(0)=d \quad \Longleftrightarrow \quad d=0
$$

We now use the fact that the point $(1,0,0)$ is in the plane to find a.

$$
a(1)+b(0)+c(0)=0 \quad \Longleftrightarrow \quad a=0
$$

Finally, we use the fact that the point $(2,3,4)$ is in the plane to get a relationship between b and c.

$$
0(2)+b(3)+c(4)=0 \quad \Longleftrightarrow \quad b=-\frac{4}{3} c
$$

Thus, the equation of the plane is:

$$
\begin{aligned}
a x+b y+c z & =d \\
0 x-\frac{4}{3} c y+c z & =0 \\
c\left(-\frac{4}{3} y+z\right) & =0 \\
-\frac{4}{3} y+z & =0 \\
-4 y+3 z & =0
\end{aligned}
$$

Math 210, Exam 1, Spring 2001
 Problem 3 Solution

3. The position vector of a moving particle is given by

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle 3 t-4,3 t^{2}, 2 t^{2}+t\right\rangle .
$$

(a) Find the velocity $\overrightarrow{\mathbf{v}}(t)$.
(b) Find the speed.
(c) Find the acceleration $\overrightarrow{\mathbf{a}}(t)$.
(d) Find the curvature $\kappa(t)$.
(e) Write the integral which gives the arclength from the point where $t=0$ to the point where $t=5$, do not evaluate the integral.

Solution:

(a) The velocity is the derivative of position.

$$
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle 3,6 t, 4 t+1\rangle
$$

(b) The speed is the magnitude of velocity.

$$
\begin{aligned}
v(t) & =\|\overrightarrow{\mathbf{v}}(t)\| \\
v(t) & =\sqrt{3^{2}+(6 t)^{2}+(4 t+1)^{2}} \\
v(t) & =\sqrt{9+36 t^{2}+16 t^{2}+8 t+1} \\
v(t) & =\sqrt{52 t^{2}+8 t+10}
\end{aligned}
$$

(c) The acceleration is the derivative of velocity.

$$
\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{v}}^{\prime}(t)=\langle 0,6,4\rangle
$$

(d) We use the following definition of curvature:

$$
\kappa(t)=\frac{\|\overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)\|}{\|\overrightarrow{\mathbf{v}}(t)\|^{3}}
$$

The cross product $\overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)$ is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)=\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0 & 6 & 4 \\
3 & 6 t & 4 t+1
\end{array}\right| \\
& \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)=\hat{\mathbf{1}}\left|\begin{array}{cc}
6 & 4 \\
6 t & 4 t+1
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
0 & 4 \\
3 & 4 t+1
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
0 & 6 \\
3 & 6 t
\end{array}\right| \\
& \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)=\hat{\mathbf{1}}[(6)(4 t+1)-(6 t)(4)]-\hat{\mathbf{j}}[(0)(4 t+1)-(3)(4)]+\hat{\mathbf{k}}[(0)(6 t)-(3)(6)] \\
& \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)=6 \hat{\mathbf{\imath}}+12 \hat{\mathbf{j}}-18 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)=\langle 6,12,-18\rangle
\end{aligned}
$$

The curvature function is then:

$$
\begin{aligned}
& \kappa(t)=\frac{\|\overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{v}}(t)\|}{\|\overrightarrow{\mathbf{v}}(t)\|^{3}} \\
& \kappa(t)=\frac{\|\langle 6,12,-18\rangle\|}{v(t)^{3}} \\
& \kappa(t)=\frac{\sqrt{6^{2}+12^{2}+(-18)^{2}}}{\left(\sqrt{52 t^{2}+8 t+10}\right)^{3}} \\
& \kappa(t)=\frac{6 \sqrt{14}}{\left(52 t^{2}+8 t+10\right)^{3 / 2}}
\end{aligned}
$$

(e) The arclength integral is:

$$
\begin{aligned}
L & =\int_{0}^{5}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
L & =\int_{0}^{5} \sqrt{52 t^{2}+8 t+10} d t
\end{aligned}
$$

Math 210, Exam 1, Spring 2001
 Problem 4 Solution

4. Let $f(x, y)=y e^{\left(x^{2}+y^{2}\right)}$.
(a) Find f_{x} and f_{y}.
(b) Find $f_{x, y}$.

Solution:

(a) The first partial derivatives f_{x} and f_{y} are:

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x} y e^{\left(x^{2}+y^{2}\right)} & f_{y} & =\frac{\partial}{\partial y} y e^{\left(x^{2}+y^{2}\right)} \\
f_{x} & =y \frac{\partial}{\partial x} e^{\left(x^{2}+y^{2}\right)} & f_{y} & =y \cdot \frac{\partial}{\partial y} e^{\left(x^{2}+y^{2}\right)}+e^{\left(x^{2}+y^{2}\right)} \cdot \frac{\partial}{\partial y} y \\
f_{x} & =y e^{\left(x^{2}+y^{2}\right)} \cdot \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) & f_{y} & =y e^{\left(x^{2}+y^{2}\right)} \cdot \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)+e^{\left(x^{2}+y^{2}\right)} \cdot 1 \\
f_{x} & =y e^{\left(x^{2}+y^{2}\right)} \cdot 2 x & f_{y} & =y e^{\left(x^{2}+y^{2}\right)} \cdot 2 y+e^{\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

(b) The mixed derivative $f_{x, y}$ is:

$$
\begin{aligned}
f_{x, y} & =\left(f_{x}\right)_{y} \\
f_{x, y} & =\frac{\partial}{\partial y} y e^{\left(x^{2}+y^{2}\right)} \cdot 2 x \\
f_{x, y} & =\frac{\partial}{\partial y} 2 x y e^{\left(x^{2}+y^{2}\right)} \\
f_{x, y} & =2 x y \cdot \frac{\partial}{\partial y} e^{\left(x^{2}+y^{2}\right)}+e^{\left(x^{2}+y^{2}\right)} \cdot \frac{\partial}{\partial y} 2 x y \\
f_{x, y} & =2 x y e^{\left(x^{2}+y^{2}\right)} \cdot \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)+e^{\left(x^{2}+y^{2}\right)} \cdot 2 x \frac{\partial}{\partial y} y \\
f_{x, y} & =2 x y e^{\left(x^{2}+y^{2}\right)} \cdot 2 y+e^{\left(x^{2}+y^{2}\right)} \cdot 2 x
\end{aligned}
$$

Math 210, Exam 1, Spring 2001
 Problem 5 Solution

5. Let $f(x, y)=\frac{2 x}{x-y}$.
(a) Find the domain of f.
(b) Sketch the level curves $f(x, y)=k$ for $k=0,1,2$ and label them.

Solution:

(a) The domain of the function is the set of all pairs (x, y) such that x and y are real numbers satisfying $x-y \neq 0$.
(b) First, when $k=0$ we have $f(x, y)=0$ which gives us the level curve:

$$
\frac{2 x}{x-y}=0 \quad \Longleftrightarrow \quad x=0
$$

Next, when $k=1$ we have $f(x, y)=1$ which gives us the level curve:

$$
\frac{2 x}{x-y}=1 \quad \Longleftrightarrow \quad y=-x
$$

Finally, when $k=2$ we have $f(x, y)=2$ which gives us the level curve:

$$
\frac{2 x}{x-y}=2 \quad \Longleftrightarrow \quad y=0
$$

Math 210, Exam 1, Spring 2001
 Problem 6 Solution

6. (a) Find an equation of the tangent plane to the surface

$$
z=x+\ln (2 x+y)
$$

at the point $(-1,3,-1)$.
(b) Find the differential of the function $f(x, y)=x+\ln (2 x+y)$.

Solution:

(a) We will use the following formula for the plane tangent to $z=f(x, y)=x+\ln (2 x+y)$ at the point $(-1,3,-1)$:

$$
z=f(-1,3)+f_{x}(-1,3)(x-(-1))+f_{y}(-1,3)(y-3)
$$

The first partial derivatives of f are:

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}[x+\ln (2 x+y)] & f_{y} & =\frac{\partial}{\partial y}[x+\ln (2 x+y)] \\
f_{x} & =1+\frac{1}{2 x+y} \cdot \frac{\partial}{\partial x}(2 x+y) & f_{y} & =\frac{1}{2 x+y} \cdot \frac{\partial}{\partial y}(2 x+y) \\
f_{x} & =1+\frac{2}{2 x+y} & f_{y} & =\frac{1}{2 x+y}
\end{aligned}
$$

At the point $(-1,3)$ we have:

$$
\begin{array}{ll}
f_{x}(-1,3)=1+\frac{2}{2(-1)+3} & f_{y}(-1,3)=\frac{1}{2(-1)+3} \\
f_{x}(-1,3)=3 & f_{y}(-1,3)=1
\end{array}
$$

Thus, an equation for the tangent plane is:

$$
z=-1+3(x+1)+(y-3)
$$

(b) The differential $d f$ of the function $f(x, y)=x+\ln (2 x+y)$ is:

$$
\begin{aligned}
& d f=f_{x} d x+f_{y} d y \\
& d f=\left(1+\frac{2}{2 x+y}\right) d x+\left(\frac{1}{2 x+y}\right) d y
\end{aligned}
$$

where the partial derivatives f_{x} and f_{y} were calculated in part (a).

