Math 210, Exam 1, Spring 2008
 Problem 1 Solution

1. Complete each of the following:
(a) Find a set of parametric equations for the line through $(1,-1,2)$ and $(0,-2,-3)$.
(b) Consider the vectors $\overrightarrow{\mathbf{v}}=\langle-1,1,2\rangle$ and $\overrightarrow{\mathbf{w}}=\langle 2,-2,4\rangle$. Are the vectors perpendicular, parallel, or neither? Explain.

Solution:

(a) In order to find a set of parametric equations for the line, we need a point P_{0} on the line and a vector $\overrightarrow{\mathbf{v}}$ parallel to it. A vector parallel to the line is the vector from the first point to the second point. This vector is:

$$
\overrightarrow{\mathbf{v}}=\langle 1-0,-1-(-2), 2-(-3)\rangle=\langle 1,1,5\rangle
$$

Using the point $(1,-1,2)$ as a point P_{0} on the line, we have:

$$
x=1+t, y=-1+t, z=2+5 t
$$

(b) The vectors are not parallel because they are not scalar multiples of one another. The vectors are not perpendicular because the dot product:

$$
\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=(-1)(2)+(1)(-2)+(2)(4)=4
$$

is nonzero. Therefore, the vectors are neither parallel nor perpendicular.

Math 210, Exam 1, Spring 2008
 Problem 2 Solution

2. Find the equation for the plane containing the point $(1,2,3)$ and the line whose vector equation is $\overrightarrow{\mathbf{r}}(t)=\langle 1-t, t, 2+4 t\rangle$.

Solution: To find the equation for the plane, we must find a vector $\overrightarrow{\mathbf{n}}$ perpendicular to it. To do this, we take the cross product of two vectors in the plane. One such vector is $\overrightarrow{\mathbf{v}}=\langle-1,1,4\rangle$ whose components are the coefficients of t in $\overrightarrow{\mathbf{r}}(t)$. This vector is parallel to the line and lies in the plane. The other vector can be obtained by constructing a vector $\overrightarrow{\mathrm{w}}$ from the point $(1,2,3)$ and to a point on the line. A point on the line is $(1,0,2)$, whose coordinates we identify as the constants in $\overrightarrow{\mathbf{r}}(t)$. Therefore, the vector $\overrightarrow{\mathbf{w}}$ is:

$$
\overrightarrow{\mathrm{w}}=\langle 1-1,2-0,3-2\rangle=\langle 0,2,1\rangle
$$

The vector $\overrightarrow{\mathbf{n}}$ is:

$$
\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}=\left|\begin{array}{rcc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-1 & 1 & 4 \\
0 & 2 & 1
\end{array}\right|=\langle-7,1,-2\rangle
$$

Thus, the equation for the plane is:

$$
-7(x-1)+(y-2)-2(z-3)=0
$$

Math 210, Exam 1, Spring 2008
 Problem 3 Solution

3. Consider the plane whose equation is $x-y+2 z=1$ and the point $A=(0,-1,1)$.
(a) Find a point in the plane. Call it P.
(b) Find a vector $\overrightarrow{\mathbf{v}}$ perpendicular to the plane and compute $\hat{\mathbf{e}}_{\mathbf{v}}$, the unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
(c) Compute $\operatorname{proj}_{\hat{e}_{\mathrm{v}}} \overrightarrow{P A}$, the vector projection of $\overrightarrow{P A}$ onto $\hat{\mathbf{e}}_{\mathrm{v}}$.
(d) Compute $\left\|\operatorname{proj}_{\hat{e}_{\mathrm{v}}} \overrightarrow{P A}\right\|$. What is the geometric meaning of this quantity?

Solution:

(a) Let $P=(1,0,0)$. This works since $x-y+2 z=1-0+2(0)=1$.
(b) The components of $\overrightarrow{\mathbf{v}}$ are the coefficients of x, y, and z in the plane equation:

$$
\overrightarrow{\mathbf{v}}=\langle 1,-1,2\rangle
$$

The unit vector in the direction of $\overrightarrow{\mathbf{v}}$ is:

$$
\hat{\mathbf{e}}_{\mathbf{v}}=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\langle 1,-1,2\rangle}{\sqrt{1^{2}+(-1)^{2}+2^{2}}}=\left\langle\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\rangle
$$

(c) The vector $\overrightarrow{P A}$ is:

$$
\overrightarrow{P A}=\langle 0-1,-1-0,1-0\rangle=\langle-1,-1,1\rangle
$$

The projection of $\overrightarrow{P A}$ onto $\hat{\mathbf{e}}_{\mathbf{v}}$ is:

$$
\begin{aligned}
\operatorname{proj}_{\hat{\mathbf{e}}_{\mathbf{v}}} \overrightarrow{P A} & =\left(\overrightarrow{P A} \cdot \hat{\mathbf{e}}_{\mathbf{v}}\right) \hat{\mathbf{e}}_{\mathbf{v}} \\
& =\left[(-1)\left(\frac{1}{\sqrt{6}}\right)+(-1)\left(-\frac{1}{\sqrt{6}}\right)+(1)\left(\frac{2}{\sqrt{6}}\right)\right] \\
& =\frac{2}{\sqrt{6}}\left\langle\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\rangle \\
& =\left\langle\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right\rangle
\end{aligned}
$$

(d) The magnitude of the projection is:

$$
\left\|\operatorname{proj}_{\hat{\mathrm{e}}_{\mathrm{v}}} \overrightarrow{P A}\right\|=\frac{2}{\sqrt{6}}
$$

This quantity represents the distance between the point A and the plane.

Math 210, Exam 1, Spring 2008
 Problem 4 Solution

4. Consider the vector-valued function $\overrightarrow{\mathbf{r}}(t)=\left\langle e^{3 t}, \sin (2 t), t^{2}\right\rangle$.
(a) Compute $\overrightarrow{\mathbf{r}}^{\prime}(t)$.
(b) Compute the unit tangent vector, $\overrightarrow{\mathbf{T}}(t)$. Do not attempt to simplify your answer.
(c) Given the function $g(t)=4 t+1$, compute $\frac{d}{d t} \overrightarrow{\mathbf{r}}(g(t))$ using the Chain Rule.

Solution:

(a) The derivative $\overrightarrow{\mathbf{r}}^{\prime}(t)$ is:

$$
\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 3 e^{3 t}, 2 \cos (2 t), 2 t\right\rangle
$$

(b) The unit tangent vector is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{T}}(t)=\frac{\overrightarrow{\mathbf{r}}^{\prime}(t)}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|} \\
& \overrightarrow{\mathbf{T}}(t)=\frac{\left\langle 3 e^{3 t}, 2 \cos (2 t), 2 t\right\rangle}{\sqrt{\left(3 e^{3 t}\right)^{2}+[2 \cos (2 t)]^{2}+(2 t)^{2}}} \\
& \overrightarrow{\mathbf{T}}(t)=\frac{\left\langle 3 e^{3 t}, 2 \cos (2 t), 2 t\right\rangle}{\sqrt{9 e^{6 t}+4 \cos ^{2}(2 t)+4 t^{2}}}
\end{aligned}
$$

(c) Using the Chain Rule, we have:

$$
\begin{aligned}
& \frac{d}{d t} \overrightarrow{\mathbf{r}}(g(t))=g^{\prime}(t) \overrightarrow{\mathbf{r}}^{\prime}(g(t)) \\
& \frac{d}{d t} \overrightarrow{\mathbf{r}}(g(t))=\frac{d}{d t}(4 t+1) \overrightarrow{\mathbf{r}}^{\prime}(4 t+1) \\
& \frac{d}{d t} \overrightarrow{\mathbf{r}}(g(t))=4\left\langle 3 e^{3(4 t+1)}, 2 \cos [2(4 t+1)], 2(4 t+1)\right\rangle
\end{aligned}
$$

Math 210, Exam 1, Spring 2008
 Problem 5 Solution

5. Find the length of the curve $\overrightarrow{\mathbf{r}}(t)=\left\langle\sqrt{2} t, \ln t, \frac{1}{2} t^{2}\right\rangle$ for $1 \leq t \leq 2$. (Hint: In the integrand, the expression under the square root is a perfect square.)

Solution: The equation for arc length is:

$$
L=\int_{a}^{b}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t
$$

The derivative $\overrightarrow{\mathbf{r}}^{\prime}(t)$ and its magnitude $\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|$ are:

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(t) & =\left\langle\sqrt{2}, \frac{1}{t}, t\right\rangle \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{2+\frac{1}{t^{2}}+t^{2}}
\end{aligned}
$$

The arc length of the curve is then:

$$
\begin{aligned}
L & =\int_{1}^{2} \sqrt{2+\frac{1}{t^{2}}+t^{2}} d t \\
& =\int_{1}^{2} \sqrt{\left(\frac{1}{t}+t\right)^{2}} d t \\
& =\int_{1}^{2}\left(\frac{1}{t}+t\right) d t \\
& =\left[\ln |t|+\frac{1}{2} t^{2}\right]_{1}^{2} \\
& =\left[(\ln 2+2)-\left(\ln 1+\frac{1}{2}\right)\right] \\
& =\ln 2+\frac{3}{2}
\end{aligned}
$$

