Math 210, Exam 1, Spring 2010
 Problem 1a Solution

1a. Consider the curve $\overrightarrow{\mathbf{r}}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$.
(1) Find the arc length of $\overrightarrow{\mathbf{r}}(t)$ from $t=0$ to $t=1$.
(2) Find the curvature at $t=1$.

Solution:

(1) The derivative of $\overrightarrow{\mathbf{r}}(t)$ is $\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1,2 t, 2 t^{2}\right\rangle$. The magnitude of $\overrightarrow{\mathbf{r}}^{\prime}(t)$ is computed and simplified as follows:

$$
\begin{aligned}
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{1^{2}+(2 t)^{2}+\left(2 t^{2}\right)^{2}} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{1+4 t^{2}+4 t^{4}} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =\sqrt{\left(1+2 t^{2}\right)^{2}} \\
\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| & =1+2 t^{2}
\end{aligned}
$$

We can now compute the arc length from $t=0$ to $t=1$.

$$
\begin{aligned}
L & =\int_{0}^{1}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
L & =\int_{0}^{1}\left(1+2 t^{2}\right) d t \\
L & =\left[t+\frac{2}{3} t^{3}\right]_{0}^{1} \\
L & =\left[1+\frac{2}{3}(1)^{3}\right]-\left[0+\frac{2}{3}(0)^{3}\right] \\
L & =\frac{5}{3}
\end{aligned}
$$

(2) The curvature formula we will use is:

$$
\kappa(1)=\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(1)\right\|^{3}}
$$

The first two derivatives of $\overrightarrow{\mathbf{r}}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ are:

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(t) & =\left\langle 1,2 t, 2 t^{2}\right\rangle \\
\overrightarrow{\mathbf{r}}^{\prime \prime}(t) & =\langle 0,2,4 t\rangle
\end{aligned}
$$

We now evaluate the derivatives at $t=1$.

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(1) & =\langle 1,2,2\rangle \\
\overrightarrow{\mathbf{r}}^{\prime \prime}(1) & =\langle 0,2,4\rangle
\end{aligned}
$$

The cross product of these vectors is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)=\left|\begin{array}{lll}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & 2 \\
0 & 2 & 4
\end{array}\right| \\
& \overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)=\hat{\mathbf{i}}\left|\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)=\hat{\mathbf{i}}[(2)(4)-(2)(2)]-\hat{\mathbf{j}}[(1)(4)-(0)(2)]+\hat{\mathbf{k}}[(1)(2)-(0)(2)] \\
& \overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)=4 \hat{\mathbf{\imath}}-4 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)=\langle 4,-4,2\rangle
\end{aligned}
$$

We can now compute the curvature.

$$
\begin{aligned}
& \kappa(1)=\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(1) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(1)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(1)\right\|^{3}} \\
& \kappa(1)=\frac{\|\langle 4,-4,2\rangle\|}{\|\langle 1,2,2\rangle\|^{3}} \\
& \kappa(1)=\frac{\sqrt{4^{2}+(-4)^{2}+2^{2}}}{\left(\sqrt{1^{2}+2^{2}+2^{2}}\right)^{3}} \\
& \kappa(1)=\frac{\sqrt{36}}{(\sqrt{9})^{3}} \\
& \kappa(1)=\frac{2}{9}
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 1b Solution

1b. A particle moves along the space curve $\overrightarrow{\mathbf{r}}(t)=(t \cos (t), t \sin (t), t)$.
(1) Find the velocity, acceleration, and speed as functions of time.
(2) Find the unit tangent and unit normal vectors at $t=0$.

Solution:

(1) The velocity and acceleration functions are:

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle\cos (t)-t \sin (t), \sin (t)+t \cos (t), 1\rangle \\
& \overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle-2 \sin (t)-t \cos (t), 2 \cos (t)-t \sin (t), 0\rangle
\end{aligned}
$$

The speed is computed and simplified as follows:
$\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{(\cos (t)-t \sin (t))^{2}+(\sin (t)+t \cos (t))^{2}+1^{2}}$
$\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{\cos ^{2}(t)-2 t \sin (t) \cos (t)+t^{2} \sin ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)+t^{2} \cos ^{2}(t)+1}$
$\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{\left(\cos ^{2}(t)+\sin ^{2}(t)\right)+t^{2}\left(\sin ^{2}(t)+\cos ^{2}(t)\right)+1}$
$\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{1+t^{2}(1)+1}$
$\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{t^{2}+2}$
(2) At $t=0$ the velocity vector is:

$$
\overrightarrow{\mathbf{v}}(0)=\langle\cos (0)-0 \cdot \sin (0), \sin (0)+0 \cdot \cos (0), 1\rangle=\langle 1,0,1\rangle
$$

Thus, the unit tangent vector at $t=0$ is:

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}(0) & =\frac{1}{\|\overrightarrow{\mathbf{v}}(0)\|} \overrightarrow{\mathbf{v}}(0) \\
\overrightarrow{\mathrm{T}}(0) & =\frac{1}{\|\langle 1,0,1\rangle\|}\langle 1,0,1\rangle \\
\overrightarrow{\mathrm{T}}(0) & =\frac{1}{\sqrt{1^{2}+0^{2}+1^{2}}}\langle 1,0,1\rangle \\
\overrightarrow{\mathrm{T}}(0) & =\left\langle\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

To compute the unit normal vector at $t=0$ we will use the formula:

$$
\overrightarrow{\mathbf{a}}=a_{T} \overrightarrow{\mathbf{T}}+a_{N} \overrightarrow{\mathbf{N}}
$$

instead of

$$
\overrightarrow{\mathrm{N}}=\frac{1}{\left\|\overrightarrow{\mathrm{~T}}^{\prime}\right\|} \overrightarrow{\mathrm{T}}^{\prime}
$$

due to the complicated derivative $\overrightarrow{\mathbf{T}}^{\prime}$. To start, we evaluate $\overrightarrow{\mathbf{a}}(0)$ and a_{T} as follows:

$$
\begin{aligned}
\overrightarrow{\mathbf{a}}(0) & =\langle-2 \sin (0)-0 \cdot \cos (0), 2 \cos (0)-0 \cdot \sin (0), 0\rangle=\langle 0,2,0\rangle \\
a_{T} & =\frac{\langle\overrightarrow{\mathbf{a}}(0) \cdot \overrightarrow{\mathbf{v}}(0)\rangle}{\|\overrightarrow{\mathbf{v}}(0)\|}=\frac{\langle 0,2,0\rangle \cdot\langle 1,0,1\rangle}{\|\langle 1,0,1\rangle\|}=0
\end{aligned}
$$

Therefore, we know that the tangential component of the acceleration is zero at $t=0$ and:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=a_{T} \overrightarrow{\mathbf{T}}+a_{N} \overrightarrow{\mathbf{N}} \\
& \overrightarrow{\mathbf{a}}=a_{N} \overrightarrow{\mathrm{~N}}
\end{aligned}
$$

Taking the magnitude of both sides and solving for a_{N} we get:

$$
\begin{aligned}
\|\overrightarrow{\mathbf{a}}\| & =\left\|a_{N} \overrightarrow{\mathbf{N}}\right\| \\
\|\overrightarrow{\mathbf{a}}\| & =a_{N}\|\overrightarrow{\mathbf{N}}\| \\
\|\overrightarrow{\mathbf{a}}\| & =a_{N}(1) \\
a_{N} & =\|\overrightarrow{\mathbf{a}}\| \\
a_{N} & =\|\langle 0,2,0\rangle\| \\
a_{N} & =2
\end{aligned}
$$

Thus, the unit normal vector at $t=0$ is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{N}}(0)=\frac{1}{a_{N}} \overrightarrow{\mathbf{a}}(0) \\
& \overrightarrow{\mathbf{N}}(0)=\frac{1}{2}\langle 0,2,0\rangle \\
& \overrightarrow{\mathbf{N}}(0)=\langle 0,1,0\rangle
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 2a Solution

2a. Let $f(x, y)=x \sqrt{y}+y$.
(1) Find f_{x} and f_{y} at $(2,4)$.
(2) Write the equation of the tangent plane to the graph of f at the point $(2,4)$.

Solution:

(1) The first derivatives f_{x} and f_{y} are

$$
\begin{aligned}
f_{x} & =\sqrt{y} \\
f_{y} & =\frac{x}{2 \sqrt{y}}+1
\end{aligned}
$$

At the point $(2,4)$, the first derivatives are:

$$
\begin{aligned}
& f_{x}(2,4)=\sqrt{4}=2 \\
& f_{y}(2,4)=\frac{2}{2 \sqrt{4}}+1=\frac{3}{2}
\end{aligned}
$$

(2) An equation for the tangent plane at $(2,4)$ is:

$$
\begin{aligned}
& z=f(2,4)+f_{x}(2,4)(x-2)+f_{y}(2,4)(y-4) \\
& z=8+2(x-2)+\frac{3}{2}(y-4)
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 2b Solution

2b. Let $f(x, y)=\sqrt{x^{2}+3 y^{2}}$.
(1) Find f_{x} and f_{y} at $(1,4)$.
(2) Write the equation of the tangent plane to the graph of f at the point $(1,4)$.

Solution:

(1) The first derivatives f_{x} and f_{y} are

$$
\begin{aligned}
f_{x} & =\frac{x}{\sqrt{x^{2}+3 y^{2}}} \\
f_{y} & =\frac{3 y}{\sqrt{x^{2}+3 y^{2}}}
\end{aligned}
$$

At the point $(1,4)$, the first derivatives are:

$$
\begin{aligned}
& f_{x}(1,4)=\frac{1}{\sqrt{1^{2}+3(4)^{2}}}=\frac{1}{7} \\
& f_{y}(1,4)=\frac{3(4)}{\sqrt{1^{2}+3(4)^{2}}}=\frac{12}{7}
\end{aligned}
$$

(2) An equation for the tangent plane at $(1,4)$ is:

$$
\begin{aligned}
& z=f(1,4)+f_{x}(1,4)(x-1)+f_{y}(1,4)(y-4) \\
& z=7+\frac{1}{7}(x-1)+\frac{12}{7}(y-4)
\end{aligned}
$$

Math 210, Exam 1, Spring 2010 Problem 3a Solution

3a. Compute $\frac{d w}{d t}$ for $w=e^{-x} \sin (x+y)$, where $x=t^{2}$ and $y=1-t$.
Solution: Using the Chain Rule, we have

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
\frac{d w}{d t} & =\left[-e^{-x} \sin (x+y)+e^{-x} \cos (x+y)\right](2 t)+\left[e^{-x} \cos (x+y)\right](-1) \\
\frac{d w}{d t} & =2 t e^{-x}[\cos (x+y)-\sin (x+y)]-e^{-x} \cos (x+y) \\
\frac{d w}{d t} & =2 t e^{-t^{2}}\left[\cos \left(t^{2}+1-t\right)-\sin \left(t^{2}+1-t\right)\right]-e^{-t^{2}} \cos \left(t^{2}+1-t\right)
\end{aligned}
$$

Math 210, Exam 1, Spring 2010 Problem 3b Solution

3b. Compute $\frac{d w}{d t}$ for $w=e^{y-x} \sin (y)$, where $x=t^{2}$ and $y=1-t$.
Solution: Using the Chain Rule, we have

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
\frac{d w}{d t} & =\left[-e^{y-x} \sin (y)\right](2 t)+\left[e^{y-x} \sin (y)+e^{y-x} \cos (y)\right](-1) \\
\frac{d w}{d t} & =-2 t e^{y-x} \sin (y)-e^{y-x}[\sin (y)+\cos (y)] \\
\frac{d w}{d t} & =-2 t e^{1-t-t^{2}} \sin (1-t)-e^{1-t-t^{2}}[\sin (1-t)+\cos (1-t)]
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 4a Solution

4a. Let $f(x, y, z)=x^{2}+y z$.
(1) Compute the gradient of f.
(2) Find the derivative of f at $(1,1,-3)$ in the direction $\overrightarrow{\mathbf{u}}=\frac{1}{3}(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$.
(3) In what direction of f increasing most rapidly at $(1,1,-3)$.

Solution:

(1) By definition, the gradient of $f(x, y, z)$ is $\vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$. For the function $f(x, y, z)=$ $x^{2}+y z$, we have

$$
\vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle 2 x, z, y\rangle
$$

(2) The gradient of f evaluated at $(1,1,-3)$ is

$$
\vec{\nabla} f(1,1,-3)=\langle 2(1),-3,1\rangle=\langle 2,-3,1\rangle
$$

Thus, the directional derivative of f in the direction of $\overrightarrow{\mathbf{u}}$ at $(1,1,-3)$ is

$$
\begin{aligned}
D_{\mathbf{u}} f(1,1,-3) & =\vec{\nabla} f(1,1,-3) \cdot \overrightarrow{\mathbf{u}} \\
D_{\mathbf{u}} f(1,1,-3) & =\langle 2,-3,1\rangle \cdot\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle \\
D_{\mathbf{u}} f(1,1,-3) & =(2)\left(\frac{2}{3}\right)+(-3)\left(\frac{1}{3}\right)+(1)\left(\frac{2}{3}\right) \\
D_{\mathbf{u}} f(1,1,-3) & =1
\end{aligned}
$$

(3) The direction in which f is increasing most rapidly is

$$
\hat{\mathbf{u}}=\frac{1}{\|\vec{\nabla} f\|} \vec{\nabla} f
$$

At the point $(1,1,-3)$ we have

$$
\begin{aligned}
& \hat{\mathbf{u}}=\frac{1}{\|\langle 2,-3,1\rangle\|}\langle 2,-3,1\rangle \\
& \hat{\mathbf{u}}=\frac{1}{\sqrt{14}}\langle 2,-3,1\rangle \\
& \hat{\mathbf{u}}=\left\langle\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right\rangle
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 4b Solution

4b. Let $f(x, y)=x^{2} y$.
(1) Compute the gradient of f.
(2) Find the derivative of f at $(1,2)$ in the direction $\overrightarrow{\mathbf{u}}=\left\langle\frac{4}{5},-\frac{3}{5}\right\rangle$.
(3) In what direction of f increasing most rapidly at $(1,2)$.

Solution:

(1) By definition, the gradient of $f(x, y)$ is $\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle$. For the function $f(x, y)=x^{2} y$, we have

$$
\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y, x^{2}\right\rangle
$$

(2) The gradient of f evaluated at $(1,2)$ is

$$
\vec{\nabla} f(1,2)=\left\langle 2(1)(2), 1^{2}\right\rangle=\langle 4,1\rangle
$$

Thus, the directional derivative of f in the direction of $\overrightarrow{\mathbf{u}}$ at $(1,2)$ is

$$
\begin{aligned}
& D_{\mathbf{u}} f(1,2)=\vec{\nabla} f(1,2) \cdot \overrightarrow{\mathbf{u}} \\
& D_{\mathbf{u}} f(1,2)=\langle 4,1\rangle \cdot\left\langle\frac{4}{5},-\frac{3}{5}\right\rangle \\
& D_{\mathbf{u}} f(1,2)=(4)\left(\frac{4}{5}\right)+(1)\left(-\frac{3}{5}\right) \\
& D_{\mathbf{u}} f(1,2)=\frac{13}{5}
\end{aligned}
$$

(3) The direction in which f is increasing most rapidly is

$$
\hat{\mathbf{u}}=\frac{1}{\|\vec{\nabla} f\|} \vec{\nabla} f
$$

At the point $(1,2)$ we have

$$
\begin{aligned}
& \hat{\mathbf{u}}=\frac{1}{\|\langle 4,1\rangle\|}\langle 4,1\rangle \\
& \hat{\mathbf{u}}=\frac{1}{\sqrt{17}}\langle 4,1\rangle \\
& \hat{\mathbf{u}}=\left\langle\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right\rangle
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 5a Solution

5a. Consider the three points $A=(0,0,0), B=(3,1,-1), C=(1,1,1)$.
(1) Find the equation for the plane which contains the points A, B, C.
(2) What is the area of the triangle $A B C$?

Solution:

(1) A vector perpendicular to the plane is the cross product of $\overrightarrow{A B}=\langle 3,1,-1\rangle$ and $\overrightarrow{B C}=\langle-2,0,2\rangle$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{B C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 1 & -1 \\
-2 & 0 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
3 & -1 \\
-2 & 2
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
3 & 1 \\
-2 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(1)(2)-(0)(-1)]-\hat{\mathbf{j}}[(3)(2)-(-2)(-1)]+\hat{\mathbf{k}}[(3)(0)-(-2)(1)] \\
& \overrightarrow{\mathbf{n}}=2 \hat{\mathbf{\imath}}-8 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 2,-8,2\rangle
\end{aligned}
$$

Using $A=(0,0,0)$ as a point on the plane, we have:

$$
2(x-0)-8(y-0)+2(z-0)=0
$$

(2) The area of the triangle is half the magnitude of the cross product of $\overrightarrow{A B}$ and $\overrightarrow{B C}$, which represents the area of the parallelogram spanned by the two vectors:

$$
\begin{aligned}
A & =\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{B C}\| \\
A & =\frac{1}{2} \sqrt{2^{2}+(-8)^{2}+2^{2}} \\
A & =\frac{1}{2} \sqrt{72} \\
A & =3 \sqrt{2}
\end{aligned}
$$

Math 210, Exam 1, Spring 2010
 Problem 5b Solution

5b. Consider the plane $z-2 y+z=7$ and the point $P=(0,2,3)$.
(1) Find the line through P that is perpendicular to the plane.
(2) At what point does the line from part (a) intersect the plane?
(3) Find the distance between P and the plane.

Solution: First, we note that there is a typo in the problem. The equation for the plane should be $x-2 y+z=7$.
(1) To find the line, we need a vector parallel to the line. This vector is also perpendicular to the plane. From the plane equation, we identify this vector as the coefficients of x, y, and z :

$$
\overrightarrow{\mathbf{v}}=\langle 1,-2,1\rangle
$$

Then, using $P=(0,2,3)$ as a point on the line we have the following parametric equations for the line:

$$
x=t, \quad y=2-2 t, \quad z=3+t
$$

(2) To find the point of intersection, we plug the parametric equations for the line into the plane equation and solve for t :

$$
\begin{aligned}
x-2 y+z & =7 \\
t-2(2-2 t)+(3+t) & =7 \\
6 t & =8 \\
t & =\frac{4}{3}
\end{aligned}
$$

Now plug this back into the parametric equations to get the coordinates of the point of intersection:

$$
x=\frac{4}{3}, \quad y=-\frac{2}{3}, \quad z=\frac{13}{3}
$$

(3) The distance between P and the plane is the distance between the points $P=(0,2,3)$ and $Q=\left(\frac{4}{3},-\frac{2}{3}, \frac{13}{3}\right)$:

$$
|P Q|=\sqrt{\left(0-\frac{4}{3}\right)^{2}+\left(2+\frac{2}{3}\right)^{2}+\left(3-\frac{13}{3}\right)^{2}}=\sqrt{\frac{96}{9}}=\frac{4 \sqrt{6}}{3}
$$

