Math 210, Exam 1, Spring 2013
 Problem 1 Solution

1. Let $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle 3,2,1\rangle$, and $\mathbf{w}=\langle 2,1,3\rangle$. Compute each of the following quantities:
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\mathbf{u} \times \mathbf{v}$
(c) $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}$
(d) $\cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}

Solution:

(a) The dot product is

$$
\begin{array}{ll}
& \mathbf{u} \cdot \mathbf{v}=(1)(3)+(2)(2)+(3)(1) \\
\text { ANSWER } & \mathbf{u} \cdot \mathbf{v}=10
\end{array}
$$

(b) The cross product is

$$
\begin{aligned}
& \mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right| \\
& \mathbf{u} \times \mathbf{v}=\left|\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{cc}
1 & 2 \\
3 & 2
\end{array}\right| \hat{\mathbf{k}} \\
& \mathbf{u} \times \mathbf{v}=[(2)(1)-(3)(2)] \hat{\mathbf{\imath}}-[(1)(1)-(3)(3)] \hat{\mathbf{j}}+[(1)(2)-(2)(3)] \hat{\mathbf{k}} \\
& \mathbf{u} \times \mathbf{v}=-4 \hat{\mathbf{\imath}}+8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}
\end{aligned}
$$

Answer $\mathbf{u} \times \mathbf{v}=\langle-4,8,-4\rangle$
(c) The cross product $\mathbf{v} \times \mathbf{w}$ must be computed first.

$$
\begin{aligned}
& \mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right| \\
& \mathbf{v} \times \mathbf{w}=\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right| \hat{\mathbf{\imath}}-\left|\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right| \hat{\mathbf{k}} \\
& \mathbf{v} \times \mathbf{w}=[(2)(3)-(1)(1)] \hat{\mathbf{i}}-[(3)(3)-(1)(2)] \hat{\mathbf{j}}+[(3)(1)-(2)(2)] \hat{\mathbf{k}} \\
& \mathbf{v} \times \mathbf{w}=5 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-\hat{\mathbf{k}} \\
& \mathbf{v} \times \mathbf{w}=\langle 5,-7,-1\rangle
\end{aligned}
$$

The dot product of \mathbf{u} with this vector gives us the result:

$$
\begin{array}{ll}
& \mathbf{u} \cdot \mathbf{v} \times \mathbf{w}=\langle 1,2,3\rangle \cdot\langle 5,-7,-1\rangle \\
\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}=(1)(5)+(2)(-7)+(3)(-1) \\
\text { ANSWER } \quad & \mathbf{u} \cdot \mathbf{v} \times \mathbf{w}=-12
\end{array}
$$

(d) The value of $\cos \theta$ may be computed using the definition

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

The dot product was computed to be 10 in part (a). The magnitudes of the vectors \mathbf{u} and \mathbf{v} are

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14} \\
& \|\mathbf{v}\|=\sqrt{3^{2}+2^{2}+1^{2}}=\sqrt{14}
\end{aligned}
$$

Therefore, the value of $\cos \theta$ is

$$
\text { Answer } \cos \theta=\frac{10}{\sqrt{14} \sqrt{14}}=\frac{5}{7}
$$

Math 210, Exam 1, Spring 2013
 Problem 2 Solution

2. Consider the curve C with parametrization $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{4}-\frac{\ln (t)}{2}, 6\right\rangle, 1 \leq t \leq 3$.
(a) Compute the unit tangent vector to C at $t=1$.
(b) Compute the arc length of C.

Solution:

(a) By definition, the unit tangent vector evaluated at $t=1$ is

$$
\mathbf{T}(1)=\frac{\mathbf{r}^{\prime}(1)}{\left\|\mathbf{r}^{\prime}(1)\right\|}
$$

The derivative is $\mathbf{r}^{\prime}(t)=\left\langle 1, \frac{t}{2}-\frac{1}{2 t}, 0\right\rangle$. The value of $\mathbf{r}^{\prime}(1)$ and its magnitude are

$$
\begin{aligned}
\mathbf{r}^{\prime}(1) & =\langle 1,0,0\rangle \\
\left\|\mathbf{r}^{\prime}(1)\right\| & =\sqrt{1^{2}+0^{2}+0^{2}}=1
\end{aligned}
$$

Therefore, the value of $\mathbf{T}^{\prime}(1)$ is

$$
\text { Answer } \quad \mathbf{T}^{\prime}(1)=\langle 1,0,0\rangle
$$

(b) The arc length formula is

$$
L=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

The magnitude of $\mathbf{r}^{\prime}(t)$ is computed and simplified as follows:

$$
\begin{aligned}
& \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1^{2}+\left(\frac{t}{2}-\frac{1}{2 t}\right)^{2}} \\
& \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1+\frac{t^{2}}{4}-\frac{1}{2}+\frac{1}{4 t^{2}}} \\
& \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\frac{t^{2}}{4}+\frac{1}{2}+\frac{1}{4 t^{2}}} \\
& \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left(\frac{t}{2}+\frac{1}{2 t}\right)^{2}} \\
& \left\|\mathbf{r}^{\prime}(t)\right\|=\frac{t}{2}+\frac{1}{2 t}
\end{aligned}
$$

Thus, the arc length is

$$
\begin{aligned}
L & =\int_{1}^{3}\left(\frac{t}{2}+\frac{1}{2 t}\right) d t \\
L & =\left[\frac{t^{2}}{4}+\frac{1}{2} \ln (t)\right]_{1}^{3} \\
L & =\left[\frac{3^{2}}{4}+\frac{1}{2} \ln (3)\right]-\left[\frac{1^{2}}{4}+\frac{1}{2} \ln (1)\right] \\
\text { ANSWER } \quad L & =2+\frac{1}{2} \ln (3)
\end{aligned}
$$

Math 210, Exam 1, Spring 2013
 Problem 3 Solution

3. Find the value of the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$ or show that it does not exist.

Solution: We use the Two-Path Test to show that the limit does not exist.

- Path 1 Let $y=0$ and take $x \rightarrow 0^{+}$. The value of the limit is then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cdot 0}{x^{4}+0^{2}}=0
$$

- Path 2 A path that results in a non-zero limit is $y=x^{2}$ as $x \rightarrow 0^{+}$. The value of the limit along this path is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cdot\left(x^{2}\right)}{x^{4}+\left(x^{2}\right)^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{4}}{x^{4}+x^{4}}=\frac{1}{2}
$$

Thus, since the value of the limit is different along two different paths, we know that the limit does not exist.

Math 210, Exam 1, Spring 2013
 Problem 4 Solution

4. Consider the plane P with equation $3 x+2 y-z+6=0$ and the point $Q(-1,0,4)$.
(a) Find the equation of the plane parallel to P and containing the point Q.
(b) Find a set of parametric equations for the line orthogonal to P containing the point Q.

Solution:

(a) From the equation of the given plane P we identify the normal vector as being $\mathbf{n}=$ $\langle 3,2,-1\rangle$. We then use the fact that parallel planes have parallel normal vectors to say that this vector is also normal to the plane in question. Using the point $Q(-1,0,4)$ as a point on the plane in question we have the following equation that describes it:

$$
\text { ANSWER } 3(x+1)+2(y-0)-(z-4)=0
$$

(b) To find the equation for a line we need a vector parallel to the line and a point on the line. The point is given to be Q. The vector we will use is $\mathbf{v}=\langle 3,2,-1\rangle$ since we know this vector to be normal to the plane P. Thus, a set of parametric equations that describes the line is:

$$
\text { ANSWER } \quad x=-1+3 t, \quad y=0+2 t, \quad z=4-t
$$

Math 210, Exam 1, Spring 2013
 Problem 5 Solution

5. Compute the first partial derivatives of the function $f(x, y)=\frac{y}{3 x^{2}+4 y^{2}}$.

Solution: The partial derivative f_{x} is

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(\frac{y}{3 x^{2}+4 y^{2}}\right) \\
f_{x} & =y \frac{\partial}{\partial x}\left(3 x^{2}+4 y^{2}\right)^{-1} \\
f_{x} & =y\left[-\frac{1}{\left(3 x^{2}+y^{2}\right)^{2}}\right] \cdot \frac{\partial}{\partial x}\left(3 x^{2}+4 y^{2}\right) \\
f_{x} & =y\left[-\frac{1}{\left(3 x^{2}+y^{2}\right)^{2}}\right] \cdot(6 x) \\
\text { ANSWER } \quad f_{x} & =-\frac{6 x y}{\left(3 x^{2}+4 y^{2}\right)^{2}}
\end{aligned}
$$

The partial derivative f_{y} is

$$
\begin{aligned}
f_{y} & =\frac{\partial}{\partial y}\left(\frac{y}{3 x^{2}+4 y^{2}}\right) \\
f_{y} & =\frac{\left(3 x^{2}+4 y^{2}\right) \frac{\partial}{\partial y} y-y \frac{\partial}{\partial y}\left(3 x^{2}+4 y^{2}\right)}{\left(3 x^{2}+4 y^{2}\right)^{2}} \\
f_{y} & =\frac{\left(3 x^{2}+4 y^{2}\right)-y(8 y)}{\left(3 x^{2}+4 y^{2}\right)^{2}}
\end{aligned}
$$

$$
\text { ANSWER } f_{y}=\frac{3 x^{2}-4 y^{2}}{\left(3 x^{2}+4 y^{2}\right)^{2}}
$$

