Math 210, Exam 2, Fall 2001 Problem 1 Solution

1. Let $f(x, y)=x e^{x y^{2}}$.
a) Find the directional derivative of f at the point $P=(0,2)$ in the direction of the vector $\overrightarrow{\mathrm{v}}=\langle 3,4\rangle$.
b) In what direction does f increase fastest at the point $P=(0,2)$?

Solution:

a) The value of the directional derivative of f at $P=(0,2)$ in the direction $\overrightarrow{\mathbf{v}}$ is:

$$
D_{\hat{\mathbf{u}}} f(0,2)=\vec{\nabla} f(0,2) \cdot \overrightarrow{\mathbf{v}}
$$

where $\hat{\mathbf{u}}$ is a unit vector in the direction of $\overrightarrow{\mathbf{v}}$. That is,

$$
\hat{\mathbf{u}}=\frac{1}{|\overrightarrow{\mathbf{v}}|} \overrightarrow{\mathbf{v}}=\frac{1}{5}\langle 3,4\rangle
$$

The gradient of f is:

$$
\begin{aligned}
& \vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle \\
& \vec{\nabla} f=\left\langle e^{x y^{2}}+x y^{2} e^{x y^{2}}, 2 x^{2} y e^{x y^{2}}\right\rangle
\end{aligned}
$$

and its value at the point $P=(0,2)$ is:

$$
\vec{\nabla} f(0,2)=\langle 1,0\rangle
$$

Thus, the directional derivative is:

$$
\begin{aligned}
D_{\hat{\mathbf{u}}} f(0,2) & =\vec{\nabla} f(0,2) \cdot \overrightarrow{\mathbf{v}} \\
& =\langle 1,0\rangle \cdot \frac{1}{5}\langle 3,4\rangle \\
& =\frac{3}{5}
\end{aligned}
$$

b) The direction in which f increases fastest at $P=(0,2)$ is the direction of steepest ascent:

$$
\begin{aligned}
\hat{\mathbf{u}} & =\frac{1}{|\vec{\nabla} f(0,2)|} \vec{\nabla} f(0,2) \\
& =\frac{1}{|1,0|}\langle 1,0\rangle \\
& =\langle 1,0\rangle
\end{aligned}
$$

Math 210, Exam 2, Fall 2001
 Problem 2 Solution

2. Find the maximum and minimum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=9$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^{2}+y^{2}=9$ is compact and that f is continuous at all points on the circle, guaranteeing the existence of absolute extrema of f. Then, let $g(x, y)=x^{2}+y^{2}=9$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=9
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
4 x & =\lambda(2 x) \tag{1}\\
2 y & =\lambda(2 y) \tag{2}\\
x^{2}+y^{2} & =9 \tag{3}
\end{align*}
$$

We begin by noting that Equation (1) gives us:

$$
\begin{aligned}
4 x & =\lambda(2 x) \\
4 x-\lambda(2 x) & =0 \\
2 x(2-\lambda) & =0
\end{aligned}
$$

From this equation we either have $x=0$ or $\lambda=2$. Let's consider each case separately.
Case 1: Let $x=0$. We find the corresponding y-values using Equation (3).

$$
\begin{aligned}
x^{2}+y^{2} & =9 \\
0^{2}+y^{2} & =9 \\
y^{2} & =9 \\
y & = \pm 3
\end{aligned}
$$

Thus, the points of interest are $(0,3)$ and $(0,-3)$.
Case 2: Let $\lambda=2$. Plugging this into Equation (2) we get:

$$
\begin{aligned}
2 y & =\lambda(2 y) \\
2 y & =2(2 y) \\
-2 y & =0 \\
y & =0
\end{aligned}
$$

We find the corresponding x-values using Equation (3).

$$
\begin{aligned}
x^{2}+y^{2} & =9 \\
x^{2}+0^{2} & =9 \\
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

Thus, the points of interest are $(3,0)$ and $(-3,0)$.

We now evaluate $f(x, y)=2 x^{2}+y^{2}$ at each point of interest obtained in Cases 1 and 2 .

$$
\begin{aligned}
f(0,3) & =9 \\
f(0,-3) & =9 \\
f(3,0) & =18 \\
f(3,0) & =18
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of 18 and an absolute minimum of 9 .

Figure 1: Shown in the figure are the level curves of $f(x, y)=2 x^{2}+y^{2}$ and the circle $x^{2}+y^{2}=9$ (thick, black curve). Darker colors correspond to smaller values of $f(x, y)$. Notice that (1) the level curve $f(x, y)=9$ is tangent to the circle at $(0,3)$ and $(0,-3)$ which correspond to absolute minima and (2) the level curve $f(x, y)=18$ is tangent to the circle at $(3,0)$ and $(-3,0)$ which correspond to absolute maxima.

Math 210, Exam 2, Fall 2001
 Problem 3 Solution

3. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $3 x+3 y+z=3$.

Solution: The region is plotted below.

We use a triple integral to compute the volume. The formula we use is:

$$
V=\iiint_{D} 1 d V
$$

The region D is bounded below by the plane $z=0$ and above by the plane $z=3-3 x-3 y$. The projection of D onto the $x y$-plane is the triangular region $\{(x, y): 0 \leq y \leq 1-x, 0 \leq x \leq 1\}$. The line $y=1-x$ is the intersection of the plane $z=3-3 x-3 y$ and the plane $z=0$.

$$
\begin{aligned}
z & =z \\
0 & =3-3 x-3 y \\
3 y & =3-3 x \\
y & =1-x
\end{aligned}
$$

Using the order of integration $d z d y d x$, the volume is:

$$
\begin{aligned}
V=\iiint_{D} 1 d V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{3-3 x-3 y} 1 d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x}[z]_{0}^{3-3 x-3 y} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x}(3-3 x-3 y) d y d x \\
& =\int_{0}^{1}\left[3 y-3 x y-\frac{3}{2} y^{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1}\left[3(1-x)-3 x(1-x)-\frac{3}{2}(1-x)^{2}\right] d x \\
& =\int_{0}^{1}\left(3-3 x-3 x+3 x^{2}-\frac{3}{2}+3 x-\frac{3}{2} x^{2}\right) d x \\
& =\int_{0}^{1}\left(\frac{3}{2} x^{2}-3 x+\frac{3}{2}\right) d x \\
& =\left[\frac{1}{2} x^{3}-\frac{3}{2} x^{2}+\frac{3}{2} x\right]_{0}^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

Math 210, Exam 2, Fall 2001
 Problem 4 Solution

4. Let L be a square lamina with verties at $(0,0),(4,0),(4,4)$, and $(0,4)$. Its density function is $\rho(x, y)=y$. Is it possible for the point $(2,1)$ to be the center of mass of L ?

Solution: By definition, the center of mass coordinates are:

$$
\begin{aligned}
x_{c m} & =\frac{M_{y}}{M}=\frac{\iint_{L} x \rho(x, y) d A}{\iint_{L} \rho(x, y) d A} \\
y_{c m} & =\frac{M_{x}}{M}=\frac{\iint_{L} y \rho(x, y) d A}{\iint_{L} \rho(x, y) d A}
\end{aligned}
$$

The numerators in the center of mass formulas are the mass moments and are computed as follows:

$$
\begin{aligned}
\iint_{L} x \rho(x, y) d A & =\int_{0}^{4} \int_{0}^{4} x y d y d x & \iint_{L} y \rho(x, y) d A & =\int_{0}^{4} \int_{0}^{4} y^{2} d y d x \\
& =\int_{0}^{4} x\left[\frac{1}{2} y^{2}\right]_{0}^{4} d x & & =\int_{0}^{4}\left[\frac{1}{3} y^{3}\right]_{0}^{4} d x \\
& =\int_{0}^{4} 8 x d x & & =\int_{0}^{4} \frac{64}{3} d x \\
& =\left[4 x^{2}\right]_{0}^{4} & & =\left[\frac{64}{3} x\right]_{0}^{4} \\
& =64 & & =\frac{256}{3}
\end{aligned}
$$

The denominator in the center of mass formula is the mass of L and is computed as follows:

$$
\begin{aligned}
\iint_{L} \rho(x, y) d y d x & =\int_{0}^{4} \int_{0}^{4} y d y d x \\
& =\int_{0}^{4}\left[\frac{1}{2} y^{2}\right]_{0}^{4} d x \\
& =\int_{0}^{4} 8 d x \\
& =[8 x]_{0}^{4} \\
& =32
\end{aligned}
$$

Thus, the center of mass coordinates are:

$$
\begin{aligned}
& x_{c m}=\frac{M_{y}}{M}=\frac{64}{32}=2 \\
& y_{c m}=\frac{M_{x}}{M}=\frac{\frac{256}{3}}{32}=\frac{8}{3}
\end{aligned}
$$

and it is not possible for the point $(2,1)$ to be the center of mass.

Math 210, Exam 2, Fall 2001
 Problem 5 Solution

5. Change the order of integration:

$$
\int_{0}^{3} \int_{\frac{2}{9} x^{2}}^{\frac{2}{3} x} f d y d x
$$

Solution: The region of integration is sketched below:

To change the order of integration we solve the equations $y=\frac{2}{3} x$ and $y=\frac{2}{9} x^{2}$ for x in terms of y to get:

$$
x=\frac{3}{2} y, \quad x=\sqrt{\frac{9}{2} y}
$$

The range of y-values over which the region of integration is defined is $0 \leq y \leq 2$. Therefore, the integral becomes:

$$
\int_{0}^{3} \int_{\frac{2}{9} x^{2}}^{\frac{2}{3} x} f d y d x=\int_{0}^{2} \int_{\frac{3}{2} x}^{\sqrt{\frac{9}{2} y}} f d x d y
$$

Math 210, Exam 2, Fall 2001 Problem 6 Solution

6. Calculate the Jacobian of the transformation:

$$
\begin{aligned}
& x=u+2 v-3 w \\
& y=2 u-w \\
& z=v
\end{aligned}
$$

Solution: The Jacobian is the matrix:

$$
J=\left(\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Math 210, Exam 2, Fall 2001

Problem 7 Solution

7. Evaluate:

$$
\iiint_{R} \frac{x}{x^{2}+y^{2}} d V
$$

where R is the region in the first octant bounded by the sphere $x^{2}+y^{2}+z^{2}=9$ and the planes $x=0, y=0$ and $z=0$.

Solution: The region is plotted below.

In spherical coordinates, the equation of the sphere is $\rho=3$. Furthermore, since the region is constrained to the first octant, we know that $0 \leq \phi \leq \frac{\pi}{2}$ and $0 \leq \theta \leq \frac{\pi}{2}$. The integrand written in spherical coordinates is:

$$
\begin{aligned}
f(x, y, z) & =\frac{x}{x^{2}+y^{2}} \\
f(\rho, \phi, \theta) & =\frac{\rho \sin \phi \cos \theta}{\rho^{2} \sin ^{2} \phi} \\
& =\frac{\cos \theta}{\rho \sin \phi}
\end{aligned}
$$

Using the fact that $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ in spherical coordinates, the value of the integral is:

$$
\begin{aligned}
\iiint_{R} \frac{x}{x^{2}+y^{2}} d V & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \frac{\cos \theta}{\rho \sin \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho \cos \theta d \rho d \phi d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \cos \theta\left[\frac{1}{2} \rho^{2}\right]_{0}^{3} d \phi d \theta \\
& =\frac{9}{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \cos \theta d \phi d \theta \\
& =\frac{9}{2} \int_{0}^{\pi / 2} \cos \theta[\phi]_{0}^{\pi / 2} d \theta \\
& =\frac{9 \pi}{4} \int_{0}^{\pi / 2} \cos \theta d \theta \\
& =\frac{9 \pi}{4}[\sin \theta]_{0}^{\pi / 2} \\
& =\frac{9 \pi}{2}\left[\sin \frac{\pi}{2}-\sin 0\right] \\
& =\frac{9 \pi}{2}
\end{aligned}
$$

