
Math 210, Exam 2, Fall 2005

Problem 1 Solution

1. Let F (x, y, z) = 4x2−y2+3z2. Find the equation of the plane tangent to the level surface
F (x, y, z) = 7 at the point (1,−3, 2).

Solution: We use the following formula for the equation for the tangent plane:

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

because the equation for the surface is given in implicit form. Note that −→n =
−→
∇F (a, b, c) =

〈Fx(a, b, c), Fy(a, b, c), Fz(a, b, c)〉 is a vector normal to the surface F (x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of F (x, y, z) = 4x2 − y2 + 3z2 are:

Fx = 8x, Fy = −2y, Fz = 6z

Evaluating these derivatives at (4, 2, 0) we get:

Fx(1,−3, 2) = 8(1) = 8

Fy(1,−3, 2) = −2(−3) = 6

Fz(1,−3, 2) = 6(2) = 12

Thus, the tangent plane equation is:

8(x− 1) + 6(y + 3) + 12(z − 2) = 0
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Problem 2 Solution

2. Let f(x, y, z) = x2 − xz + xyz.

(a) Find the rate of change of f at the point (1, 1, 1) in the direction of the unit vector
−→v = 1√

6
〈2,−1, 1〉.

(b) Find the direction in which f increases most rapidly at the point (1, 1, 1), and find the
maximum rate of change of f at that point.

(c) Suppose that the function f gives the temperature at each point in space. A bug is
flying around, with position function −→

p (t) = 〈t, t2, t3〉, carrying a thermometer in his
pocket. Use the chain rule to find the rate of change of his temperature with respect

to time at the moment when his position is (1, 1, 1).

Solution:

(a) Since −→v is a unit vector
(
∣

∣

−→v
∣

∣ = 1
)

, the rate of change of f at (1, 1, 1) in the direction
of −→v is the directional derivative:

D−→
v
f(1, 1, 1) =

−→
∇f(1, 1, 1) · −→v

The gradient of f is:

−→
∇f(x, y, z) = 〈fx, fy, fz〉
−→
∇f(x, y, z) = 〈2x− z + yz, xz,−x+ xy〉

Evaluating at the point (1, 1, 1) we get:

−→
∇f(1, 1, 1) = 〈2(1)− 1 + (1)(1), (1)(1),−1 + (1)(1)〉
−→
∇f(1, 1, 1) = 〈2, 1, 0〉

Therefore, the directional derivative is:

D−→
v
f(1, 1, 1) =

−→
∇f(1, 1, 1) · −→v

D−→
v
f(1, 1, 1) = 〈2, 1, 0〉 ·

1
√
6
〈2,−1, 1〉

D−→
v
f(1, 1, 1) =

1
√
6
[(2)(2) + (1)(−1) + (0)(1)]

D−→
v
f(1, 1, 1) =

3
√
6
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(b) The direction of most rapid increase is the direction of steepest ascent:

û =
1

∣

∣

∣

−→
∇f(1, 1, 1)

∣

∣

∣

−→
∇f(1, 1, 1)

û =
1

|〈2, 1, 0〉|
〈2, 1, 0〉

û =
1
√
5
〈2, 1, 0〉

(c) We use the Chain Rule for Paths formula:

d

dt
f
(−→p (t)

)

=
−→
∇f · −→p ′(t)

where the gradient of f was computed in part (a) and the derivative −→p ′(t) is:

−→p ′(t) =
〈

1, 2t, 3t2
〉

Taking the dot product of these vectors gives us the derivative of f(−→p (t)).

d

dt
f
(−→p (t)

)

=
−→
∇f · −→p ′(t)

d

dt
f
(−→p (t)

)

= 〈2x− z + yz, xz,−x + xy〉 ·
〈

1, 2t, 3t2
〉

d

dt
f
(−→p (t)

)

= (2x− z + yz)(1) + (xz)(2t) + (−x+ xy)
(

3t2
)

We recognize that t = 1 when the bug’s position is (1, 1, 1) because −→p (1) = 〈1, 1, 1〉.
Therefore, plugging t = 1, x = 1, y = 1, and z = 1 into the derivative we find that:

d

dt
f
(−→p (t)

)

∣

∣

∣

∣

t=1

= (2(1)− 1 + (1)(1))(1) + ((1)(1))(2(1)) + (−1 + (1)(1))
(

3(1)2
)

d

dt
f
(−→
p (t)

)

∣

∣

∣

∣

t=1

= 4
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Problem 3 Solution

3. Find the critical points of the function f(x, y) = x4 + y4 + 4xy − 1 and classify them as
maximum, minimum or saddle points.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x4 + y4 + 4xy − 1 are fx = 4x3 + 4y and fy = 4y3 + 4x.
These derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to
the system of equations:

4x3 + 4y = 0 (1)

4y3 + 4x = 0 (2)

Solving Equation (1) for y we get:
y = −x3 (3)

Substituting this into Equation (2) and solving for x we get:

4y3 + 4x = 0

4
(

−x3
)3

+ 4x = 0

−4x9 + 4x = 0

−4x
(

x8 − 1
)

= 0

−4x(x4 − 1)(x4 + 1) = 0

−4x(x2 − 1)(x2 + 1)(x4 + 1) = 0

−4x(x − 1)(x+ 1)(x2 + 1)(x4 + 1) = 0

This equation has a total of 9 solutions but only 3 are real, those being x = 0, 1,−1. We
find the corresponding y-values using Equation (3): y = −x3.

• If x = 0, then y = −(0)3 = 0.

• If x = 1, then y = −(1)3 = −1.

• If x = −1, then y = −(−1)3 = 1.

Thus, the critical points are (0, 0) , (1,−1) , and (−1, 1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 12x2, fyy = 12y2, fxy = 4
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The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) =
(

12x2
) (

12y2
)

− (4)2

D(x, y) = 144x2y2 − 16

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −16 0 Saddle Point

(1,−1) 128 12 Local Minimum

(−1, 1) 128 12 Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.

-2 -1 0 1 2
-2

-1

0

1

2

x

y

Figure 1: Picture above are level curves of f(x, y). Darker colors correspond to smaller
values of f(x, y). It is apparent that (0, 0) is a saddle point and both (1,−1) and (−1, 1)
correspond to local minima.
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Problem 4 Solution

4. Let f(x, y, z) = 1+x3+y2−z3. Suppose you were using the method of Lagrange multipliers
to find the maximum value of the function f on the ellipsoid x2 + 3y2 + 2z2 = 3.

(a) Write down the system of 4 algebraic equations in 4 unknowns that you would need to
solve. Do not try to solve these equations.

(b) State how you would find the maximum value, given the list of solutions to the equa-
tions in part (a).

Solution: Let g(x, y, z) = x2 + 3y2 + 2z2 = 3.

(a) Using the method of Lagrange multipliers, look for solutions to the following system
of equations:

fx = λgx, fy = λgy, fz = λgz, g(x, y, z) = 1

which, when applied to our functions f and g, give us:

3x2 = λ(2x) (1)

2y = λ(6y) (2)

−3z2 = λ(4z) (3)

x2 + 3y2 + 2z2 = 3 (4)

(b) The ellipsoid is compact and f is continuous at all points on the ellipsoid. Therefore,
we are guaranteed to find absolute extrema of f . If we had all solutions to the above
system of equations, we would then plug all solutions into f(x, y, z). The largest value
of f would be the absolute maximum.
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Problem 5 Solution

5. Change the order of integration to compute the iterated integral

∫

3

0

∫

1

√
x/3

ey
3

dy dx

Solution: The region of integration is sketched below:

x

y

R

y =
√

x/3

0

1

0 1 2 3

The region R can be described as follows:

R =
{

(x, y) : 0 ≤ x ≤ 3y2, 0 ≤ y ≤ 1
}

where x = 0 is the left curve and x = 3y2 is the right curve, obtained by solving the equation
y =

√

x/3 for x in terms of y. The projection of R onto the y-axis is the interval 0 ≤ y ≤ 1.
Therefore, the value of the integral is:

∫

3

0

∫

1

√
x/3

ey
3

dy dx =

∫

1

0

∫

3y2

0

ey
3

dx dy

=

∫

1

0

ey
3

[

x
]3y2

0

dy

=

∫

1

0

3y2ey
3

dy

=
[

ey
3

]1

0

= e1
3

− e0
3

= e− 1
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Problem 6 Solution

6. Find the surface area of the part of the paraboloid z = −x2 − y2 that lies above the plane
z = −20.

Solution: The formula for surface area we will use is:

S =

∫∫

S
dS =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

where the function −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉 with domain R is a parameterization

of the surface S and the vectors
−→
t u = ∂−→r

∂u
and

−→
t v =

∂−→r
∂v

are the tangent vectors.

We begin by finding a parameterization of the paraboloid. Let x = u cos(v) and y = u sin(v),
where we define u to be nonnegative. Then,

z = −x2 − y2

z = −(u cos(v))2 − (u sin(v))2

z = −u2 cos2(v)− u2 sin2(v)

z = −u2

Thus, we have −→r (u, v) = 〈u cos(v), u sin(v),−u2〉. To find the domain R, we must determine
the curve of intersection of the paraboloid and the plane z = −20. We do this by plugging
z = −20 into the equation for the paraboloid to get:

−x2 − y2 = z

−x2 − y2 = −20

x2 + y2 = 20

which describes a circle of radius
√
20. Thus, the domain R is the set of all points (x, y)

satisfying x2 + y2 ≤ 20. Using the fact that x = u cos(v) and y = u sin(v), this inequality
becomes:

x2 + y2 ≤ 20

(u cos(v))2 + (u sin(v))2 ≤ 20

u2 ≤ 20

0 ≤ u ≤
√
20

noting that, by definition, u must be nonnegative. The range of v-values is 0 ≤ v ≤ 2π.
Therefore, a parameterization of S is:

−→
r (u, v) =

〈

u cos(v), u sin(v),−u2
〉

,

R =
{

(u, v)
∣

∣

∣
0 ≤ u ≤

√
20, 0 ≤ v ≤ 2π

}
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The tangent vectors
−→
t u and

−→
t v are then:

−→
t u =

∂−→r

∂u
= 〈cos(v), sin(v),−2u〉

−→
t v =

∂−→r

∂v
= 〈−u sin(v), u cos(v), 0〉

The cross product of these vectors is:

−→
t u ×

−→
t v =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

cos(v) sin(v) −2u
−u sin(v) u cos(v) 0

∣

∣

∣

∣

∣

∣

= 2u2 cos(v) ı̂+ 2u2 sin(v) ̂+ u k̂

=
〈

2u2 cos(v), 2u2 sin(v), u
〉

The magnitude of the cross product is:
∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
=

√

(2u2 cos(v))2 + (2u2 sin(v))2 + u2

=
√

4u4 cos2(v) + 4u4 sin2(v) + u2

=
√
4u4 + u2

= u
√
4u2 + 1

We can now compute the surface area.

S =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

=

∫

√
20

0

∫

2π

0

u
√
4u2 + 1 dv du

=

∫

√
20

0

u
√
4u2 + 1

[

v
]

2π

0

du

=

∫

√
20

0

u
√
4u2 + 1

[

2π − 0
]

du

=

∫

√
20

0

2πu
√
4u2 + 1 du

=
[π

6

(

4u2 + 1
)

3/2
]

√
20

0

=

[

π

6

(

4
(√

20
)2

+ 1

)3/2
]

−
[π

6

(

4(0)2 + 1
)

3/2
]

=
π

6
(81)3/2 −

π

6
(1)3/2

=
364π

3
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