Math 210, Exam 2, Fall 2008
 Problem 1 Solution

1. Let $f(x, y, z)=\sin (x y-8)-\ln (z+1)+\frac{2 x}{y-z}$.
(a) Compute the gradient $\vec{\nabla} f$ as a function of x, y, and z.
(b) Find the equation of the tangent plane to the surface $f(x, y, z)=4$ at $(4,2,0)$.
(c) Compute the directional derivative $D_{\hat{\mathbf{u}}} f(4,2,0)$ where $\hat{\mathbf{u}}$ is a unit vector in the direction of $\langle-2,1,0\rangle$.

Solution:

(a) By definition, the gradient of $f(x, y, z)$ is:

$$
\vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

The partial derivatives of f are:

$$
\begin{aligned}
f_{x} & =y \cos (x y-8)+\frac{2}{y-z} \\
f_{y} & =x \cos (x y-8)-\frac{2 x}{(y-z)^{2}} \\
f_{z} & =-\frac{1}{z+1}+\frac{2 x}{(y-z)^{2}}
\end{aligned}
$$

Thus, the gradient is:

$$
\vec{\nabla} f=\left\langle y \cos (x y-8)+\frac{2}{y-z}, x \cos (x y-8)-\frac{2 x}{(y-z)^{2}},-\frac{1}{z+1}+\frac{2 x}{(y-z)^{2}}\right\rangle
$$

(b) We use the following formula for the equation for the tangent plane:

$$
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0
$$

because the surface equation is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} f(a, b, c)=$ $\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $f(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives evaluated at $(4,2,0)$ are:

$$
\begin{aligned}
& f_{x}(4,2,0)=2 \cos ((4)(2)-8)+\frac{2}{2-0}=3 \\
& f_{y}(4,2,0)=4 \cos ((4)(2)-8)-\frac{2(4)}{(2-0)^{2}}=2 \\
& f_{z}(4,2,0)=-\frac{1}{0+1}+\frac{2(4)}{(2-0)^{2}}=1
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
3(x-4)+2(y-2)+(z-0)=0
$$

(c) By definition, the directional derivative of $f(x, y, z)$ at $(4,2,0)$ in the direction of $\hat{\mathbf{u}}$ is:

$$
D_{\hat{\mathbf{u}}} f(4,2,0)=\vec{\nabla} f(4,2,0) \cdot \hat{\mathbf{u}}
$$

From part (b), we have $\vec{\nabla} f(4,2,0)=\langle 3,2,1\rangle$. Recalling that $\hat{\mathbf{u}}$ must be a unit vector, we multiply $\langle-2,1,0\rangle$ by the reciprocal of its magnitude.

$$
\hat{\mathbf{u}}=\frac{1}{|\langle-2,1,0\rangle|}\langle-2,1,0\rangle=\frac{1}{\sqrt{5}}\langle-2,1,0\rangle
$$

Therefore, the directional derivative is:

$$
\begin{aligned}
D_{\hat{\mathbf{u}}} f(4,2,0) & =\vec{\nabla} f(4,2,0) \cdot \hat{\mathbf{u}} \\
D_{\hat{\mathbf{u}}} f(4,2,0) & =\langle 3,2,1\rangle \cdot \frac{1}{\sqrt{5}}\langle-2,1,0\rangle \\
D_{\hat{\mathbf{u}}} f(4,2,0) & =\frac{1}{\sqrt{5}}[(3)(-2)+(2)(1)+(1)(0)] \\
D_{\hat{\mathbf{u}}} f(4,2,0) & =-\frac{4}{\sqrt{5}}
\end{aligned}
$$

Math 210, Exam 2, Fall 2008
 Problem 2 Solution

2. Let $f(x, y)=x^{2}+y^{2}-y$, and let \mathcal{D} be the bounded region defined by the inequalities $y \geq 0$ and $y \leq 1-x^{2}$.
(a) Find and classify the critical points of $f(x, y)$.
(b) Sketch the region \mathcal{D}.
(c) Find the absolute maximum and minimum values of f on the region \mathcal{D}, and list the points where these values occur.

Solution: First we note that the domain of $f(x, y)$ is bounded and closed, i.e. compact, and that $f(x, y)$ is continuous on the domain. Thus, we are guaranteed to have absolute extrema.
(a) The partial derivatives of f are $f_{x}=2 x$ and $f_{y}=2 y-1$. The critical points of f are all solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=2 x=0 \\
f_{y}=2 y-1=0
\end{array}
$$

The only solution is $x=0$ and $y=\frac{1}{2}$, which is an interior point of \mathcal{D}. The function value at the critical point is:

$$
f\left(0, \frac{1}{2}\right)=-\frac{1}{4}
$$

(b) The region \mathcal{D} (shaded) is plotted below along with level curves of $f(x, y)$.

(c) We must now determine the minimum and maximum values of f on the boundary of \mathcal{D}. To do this, we must consider each part of the boundary separately:

Part I : Let this part be the line segment between $(-1,0)$ and $(1,0)$. On this part we have $y=0$ and $-1 \leq x \leq 1$. We now use the fact that $y=0$ to rewrite $f(x, y)$ as a function of one variable that we call $g_{I}(x)$.

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-y \\
g_{I}(x) & =x^{2}+0^{2}-0 \\
g_{I}(x) & =x^{2}
\end{aligned}
$$

The critical points of $g_{I}(x)$ are:

$$
\begin{aligned}
g_{I}^{\prime}(x) & =0 \\
2 x & =0 \\
x & =0
\end{aligned}
$$

Evaluating $g_{I}(x)$ at the critical point $x=0$ and at the endpoints of the interval $-1 \leq x \leq 1$, we find that:

$$
g_{I}(0)=0, \quad g_{I}(-1)=1, \quad g_{I}(1)=1
$$

Note that these correspond to the function values:

$$
f(0,0)=0, \quad f(-1,0)=1, \quad f(1,0)=1
$$

Part II : Let this part be the parabola $y=1-x^{2}$ on the interval $-1 \leq x \leq 1$. We now use the fact that $y=1-x^{2}$ to rewrite $f(x, y)$ as a function of one variable that we call $g_{I I}(x)$.

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-y \\
g_{I I}(x) & =x^{2}+\left(1-x^{2}\right)^{2}-\left(1-x^{2}\right) \\
g_{I I}(x) & =x^{2}+1-2 x^{2}+x^{4}-1+x^{2} \\
g_{I I}(x) & =x^{4}
\end{aligned}
$$

The critical points of $g_{I I}(x)$ are:

$$
\begin{aligned}
g_{I I}^{\prime}(x) & =0 \\
4 x^{3} & =0 \\
x & =0
\end{aligned}
$$

Evaluating $g_{I I}(x)$ at the critical point $x=0$ and at the endpoints of the interval $-1 \leq x \leq 1$, we find that:

$$
g_{I I}(0)=0, \quad g_{I I}(-1)=1, \quad g_{I I}(1)=1
$$

Note that these correspond to the function values:

$$
f(0,1)=0, \quad f(-1,0)=1, \quad f(1,0)=1
$$

Finally, after comparing these values of f we find that the absolute maximum of f is 1 at the points $(-1,0)$ and $(1,0)$ and that the absolute minimum of f is $-\frac{1}{4}$ at the point $\left(0, \frac{1}{2}\right)$.

Note: In the figure from part (b) we see that the level curves of f are circles centered at $\left(0, \frac{1}{2}\right)$. It is clear that the absolute minimum of f occurs at $\left(0, \frac{1}{2}\right)$ and that the absolute maximum of f occurs at $(-1,0)$ and $(1,0)$, which are points on the largest circle centered at $\left(0, \frac{1}{2}\right)$ that contains points in \mathcal{D}.

Math 210, Exam 2, Fall 2008
 Problem 3 Solution

3. Consider the iterated integral $\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \cos \left(y^{2}\right) d y d x$.
(a) Sketch the region of integration.
(b) Compute the integral. (Hint: First reverse the order of integration.)

Solution:

(a) The region of integration \mathcal{R} is sketched below:

(b) The region \mathcal{R} can be described as follows:

$$
\mathcal{R}=\{(x, y): 0 \leq x \leq y, 0 \leq y \leq \sqrt{\pi}\}
$$

Therefore, the value of the integral is:

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \cos \left(y^{2}\right) d y d x & =\int_{0}^{\sqrt{\pi}} \int_{0}^{y} \cos \left(y^{2}\right) d x d y \\
& =\int_{0}^{\sqrt{\pi}} \cos \left(y^{2}\right)[x]_{0}^{y} \\
& =\int_{0}^{\sqrt{\pi}} y \cos \left(y^{2}\right) d y \\
& =\left[\frac{1}{2} \sin \left(y^{2}\right)\right]_{0}^{\sqrt{\pi}} \\
& =\frac{1}{2} \sin \left(\sqrt{\pi}^{2}\right)-\frac{1}{2} \sin \left(0^{2}\right) \\
& =0
\end{aligned}
$$

Math 210, Exam 2, Fall 2008 Problem 4 Solution

4. Let \mathcal{Q} be the part of the unit disk that lies in the second quadrant, i.e.

$$
\mathcal{Q}=\left\{(x, y) \mid x \leq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}
$$

(a) Write an iterated integral in polar coordinates that represents the area of \mathcal{Q} and compute this area.
(b) Compute $\iint_{\mathcal{Q}}\left(3 x^{2}+3 y^{2}\right) d A$.
(c) Compute the average value of $f(x, y)=x^{2}+y^{2}$ over \mathcal{Q}.

Solution:

(a) The region \mathcal{Q} can be described in polar coordinates as:

$$
\mathcal{Q}=\left\{(r, \theta) \mid 0 \leq r \leq 1, \frac{\pi}{2} \leq \theta \leq \pi\right\}
$$

Using the fact that $d A=r d r d \theta$ in polar coordinates, the area of \mathcal{Q} is:

$$
\begin{aligned}
\operatorname{Area}(\mathcal{Q}) & =\iint_{\mathcal{Q}} 1 d A \\
& =\int_{\pi / 2}^{\pi} \int_{0}^{1} r d r d \theta \\
& =\int_{\pi / 2}^{\pi}\left[\frac{1}{2} r^{2}\right]_{0}^{1} d \theta \\
& =\int_{\pi / 2}^{\pi} \frac{1}{2} d \theta \\
& =\left[\frac{1}{2} \theta\right]_{\pi / 2}^{\pi} \\
& =\left[\frac{\pi}{4}\right.
\end{aligned}
$$

(b) The function $f(x, y)=3 x^{2}+y^{2}$ can be written in polar coordinates as:

$$
f(r, \theta)=3 r^{2}
$$

The integral of $f(r, \theta)$ over the region \mathcal{Q} is then:

$$
\begin{aligned}
\operatorname{Area}(\mathcal{Q}) & =\iint_{\mathcal{Q}} f(r, \theta) d A \\
& =\int_{\pi / 2}^{\pi} \int_{0}^{1} 3 r^{2} \cdot r d r d \theta \\
& =\int_{\pi / 2}^{\pi}\left[\frac{3}{4} r^{4}\right]_{0}^{1} d \theta \\
& =\int_{\pi / 2}^{\pi} \frac{3}{4} d \theta \\
& =\left[\frac{3}{4} \theta\right]_{\pi / 2}^{\pi} \\
& =\frac{3 \pi}{8}
\end{aligned}
$$

(c) We use the following formula to compute the average value of f :

$$
\bar{f}=\frac{\iint_{A} f(x, y) d A}{\iint_{A} 1 d A}
$$

The function $f(x, y)=x^{2}+y^{2}$ written in polar coordinates is:

$$
f(r, \theta)=r^{2}
$$

The integral of $f(r, \theta)$ over the region \mathcal{Q} is then:

$$
\begin{aligned}
\iint_{\mathcal{Q}} f(x, y) d A & =\int_{\pi / 2}^{\pi} \int_{0}^{1} r^{2} \cdot r d r d \theta \\
& =\frac{1}{3} \int_{\pi / 2}^{\pi} \int_{0}^{1} 3 r^{2} \cdot r d r d \theta \\
& =\frac{1}{3} \cdot \frac{3 \pi}{8} \\
& =\frac{\pi}{8}
\end{aligned}
$$

where we used the result from part (b). The integral $\iint_{A} 1 d A=\frac{\pi}{4}$ was computed in part (a). Thus, the average value of f is:

$$
\bar{f}=\frac{\frac{\pi}{8}}{\frac{\pi}{4}}=\frac{1}{2}
$$

