Math 210, Exam 2, Fall 2010
 Problem 1 Solution

1. Let $f(x, y)=\frac{1}{3} x^{3}+y^{2}-x y$. Find all critical points of $f(x, y)$ and classify each as a local maximum, local minimum, or saddle point.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=\frac{1}{3} x^{3}+y^{2}-x y$ are $f_{x}=x^{2}-y$ and $f_{y}=2 y-x$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{align*}
& f_{x}=x^{2}-y=0 \tag{1}\\
& f_{y}=2 y-x=0 \tag{2}
\end{align*}
$$

Solving Equation (1) for y we get:

$$
\begin{equation*}
y=x^{2} \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for x we get:

$$
\begin{aligned}
2 y-x & =0 \\
2\left(x^{2}\right)-x & =0 \\
x(2 x-1) & =0 \\
\Longleftrightarrow \quad x=0 \text { or } x & =\frac{1}{2}
\end{aligned}
$$

We find the corresponding y-values using Equation (3): $y=x^{2}$.

- If $x=0$, then $y=0^{2}=0$.
- If $x=\frac{1}{2}$, then $y=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.

Thus, the critical points are $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=2 x, \quad f_{y y}=2, \quad f_{x y}=-1
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(2 x)(2)-(-1)^{2} \\
& D(x, y)=4 x-1
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	-1	0	Saddle Point
$\left(\frac{1}{2}, \frac{1}{4}\right)$	1	1	Local Minimum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Figure 1: Pictured above are level curves of $f(x, y)$. Darker colors correspond to smaller values of $f(x, y)$. It is apparent that $(0,0)$ is a saddle point and $\left(\frac{1}{2}, \frac{1}{4}\right)$ corresponds to a local minimum.

Math 210, Exam 2, Fall 2010
 Problem 2 Solution

2. Find the minimum and maximum of the function $f(x, y, z)=x-y-z$ on the ellipsoid $R=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{3}=1\right.\right\}$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that R is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{3}=1$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad f_{z}=\lambda g_{z}, \quad g(x, y, z)=1
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
1 & =\lambda\left(\frac{2 x}{4}\right) \tag{1}\\
-1 & =\lambda\left(\frac{2 y}{9}\right) \tag{2}\\
-1 & =\lambda\left(\frac{2 z}{3}\right) \tag{3}\\
\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{3} & =1 \tag{4}
\end{align*}
$$

To solve the system of equations, we first solve Equations (1)-(3) for the variables x, y, and z in terms of λ to get:

$$
\begin{equation*}
x=\frac{4}{2 \lambda}, \quad y=-\frac{9}{2 \lambda}, \quad z=-\frac{3}{2 \lambda} \tag{5}
\end{equation*}
$$

We then plug Equations (5) into Equation (4) and simplify.

$$
\begin{aligned}
\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{3} & =1 \\
\frac{\left(\frac{4}{2 \lambda}\right)^{2}}{4}+\frac{\left(-\frac{9}{2 \lambda}\right)^{2}}{9}+\frac{-\left(\frac{3}{2 \lambda}\right)^{2}}{3} & =1 \\
\frac{16}{4 \lambda^{2}}+\frac{81}{4}+\frac{\frac{9}{4 \lambda^{2}}}{3} & =1
\end{aligned}
$$

At this point we multiply both sides of the equation by $4 \lambda^{2}$ to get:

$$
\begin{aligned}
4 \lambda^{2}\left(\frac{\frac{16}{4 \lambda^{2}}}{4}+\frac{\frac{81}{4 \lambda^{2}}}{9}+\frac{\frac{9}{4 \lambda^{2}}}{3}\right) & =4 \lambda^{2}(1) \\
\frac{16}{4}+\frac{81}{9}+\frac{9}{3} & =4 \lambda^{2} \\
4+9+3 & =4 \lambda^{2} \\
\lambda^{2} & =4 \\
\lambda & = \pm 2
\end{aligned}
$$

- When $\lambda=2$, Equations (5) give us the first candidate for the location of an extreme value:

$$
x=1, \quad y=-\frac{9}{4}, \quad z=-\frac{3}{4}
$$

- When $\lambda=-2$, Equations (5) give us the second candidate for the location of an extreme value:

$$
x=-1, \quad y=\frac{9}{4}, \quad z=\frac{3}{4}
$$

Evaluating $f(x, y, z)$ at these points we find that:

$$
\begin{gathered}
f\left(1,-\frac{9}{4},-\frac{3}{4}\right)=1-\left(-\frac{9}{4}\right)-\left(-\frac{3}{4}\right)=4 \\
f\left(-1, \frac{9}{4}, \frac{3}{4}\right)=-1-\left(\frac{9}{4}\right)-\left(\frac{3}{4}\right)=-4
\end{gathered}
$$

Therefore, the absolute maximum value of f on R is 4 and the absolute minimum of f on R is -4 .

Note: The level surfaces $f(x, y, z)=4$ and $f(x, y, z)=-4$ are planes tangent to the ellipsoid at the critical points.

Math 210, Exam 2, Fall 2010
 Problem 3 Solution

3. Consider the double integral: $\int_{0}^{4} \int_{0}^{y^{2}} \frac{x^{3}}{4-\sqrt{x}} d x d y$.
(a) Sketch the region of integration.
(b) Change the order of integration.
(c) Evaluate the integral from part (b).

Solution:

(b) From the figure we see that the region \mathcal{R} is bounded above by $y=4$ and below by $y=\sqrt{x}$ (obtained by solving $x=y^{2}$ for y in terms of x). The projection of \mathcal{R} onto the x-axis is the interval $0 \leq x \leq 16$. Upon changing the order of integration we get the double integral:

$$
\int_{0}^{16} \int_{\sqrt{x}}^{4} \frac{x^{3}}{4-\sqrt{x}} d y d x
$$

(c) The integral from part (b) is evaluated as follows:

$$
\begin{aligned}
\int_{0}^{16} \int_{\sqrt{x}}^{4} \frac{x^{3}}{4-\sqrt{x}} d y d x & =\int_{0}^{16} \frac{x^{3}}{4-\sqrt{x}}[y]_{\sqrt{x}}^{4} d x \\
& =\int_{0}^{16} \frac{x^{3}}{4-\sqrt{x}}(4-\sqrt{x}) d x \\
& =\int_{0}^{16} x^{3} d x \\
& =\left[\frac{1}{4} x^{4}\right]_{0}^{16} \\
& =\frac{1}{4}(16)^{4} \\
& =16384
\end{aligned}
$$

Math 210, Exam 2, Fall 2010
 Problem 4 Solution

4. For the vector field $\overrightarrow{\mathbf{F}}=\left\langle y x^{2}, y^{2}\right\rangle$, find the value of $\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}$ where \mathcal{C} is the portion of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.

Solution: We evaluate the vector line integral using the formula:

$$
\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}=\int_{a}^{b} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{r}}^{\prime}(t) d t
$$

A parameterization of \mathcal{C} is $\overrightarrow{\mathbf{r}}(t)=\left\langle t, t^{2}\right\rangle, 0 \leq t \leq 1$. The derivative is $\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle 1,2 t\rangle$. Using the fact that $x=t$ and $y=t^{2}$ from the parameterization, the vector field $\overrightarrow{\mathbf{F}}$ written in terms of t is:

$$
\overrightarrow{\mathbf{F}}=\left\langle y x^{2}, y^{2}\right\rangle=\left\langle\left(t^{2}\right)(t)^{2},\left(t^{2}\right)^{2}\right\rangle=\left\langle t^{4}, t^{4}\right\rangle
$$

Thus, the value of the line integral is:

$$
\begin{aligned}
\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}} & =\int_{a}^{b} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{r}}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle t^{4}, t^{4}\right\rangle \cdot\langle 1,2 t\rangle d t \\
& =\int_{0}^{1}\left(t^{4}+2 t^{5}\right) d t \\
& =\left[\frac{1}{5} t^{5}+\frac{1}{3} t^{6}\right]_{0}^{1} \\
& =\left[\frac{1}{5}(1)^{5}+\frac{1}{3}(1)^{6}\right]-\left[\frac{1}{5}(0)^{5}+\frac{1}{3}(0)^{6}\right] \\
& =\frac{8}{15}
\end{aligned}
$$

Math 210, Exam 2, Fall 2010
 Problem 5 Solution

5. Consider the vector field $\overrightarrow{\mathbf{F}}=\left\langle a x^{2} y+8 x y^{2}-4, b x^{2} y-2 x^{3}-1\right\rangle$ where a and b are constants.
(a) Find the values of a and b for which $\overrightarrow{\mathbf{F}}$ is conservative.
(b) For the values of a and b from part (a), find a potential function $\varphi(x, y)$ such that $\overrightarrow{\mathbf{F}}=\vec{\nabla} \varphi$.

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{F}}=\langle f(x, y), g(x, y)\rangle$ to be conservative, it must be the case that:

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

Using $f(x, y)=a x^{2} y+8 x y^{2}-4$ and $g(x, y)=b x^{2} y-2 x^{3}-1$ we get:

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial g}{\partial x} \\
a x^{2}+16 x y & =2 b x y-6 x^{2} \\
a x^{2}+6 x^{2} & =2 b x y-16 x y \\
(a+6) x^{2} & =(2 b-16) x y
\end{aligned}
$$

In order for the above equation to be satisfied for all pairs (x, y), it must be the case that $a+6=0$ and $2 b-16=0$ which give us $a=-6$ and $b=8$.
(b) If $\overrightarrow{\mathbf{F}}=\vec{\nabla} \varphi$, then it must be the case that:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=f(x, y) \tag{1}\\
& \frac{\partial \varphi}{\partial y}=g(x, y) \tag{2}
\end{align*}
$$

Using $f(x, y)=-6 x^{2} y+8 x y^{2}-4$ and integrating both sides of Equation (1) with respect to x we get:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =f(x, y) \\
\frac{\partial \varphi}{\partial x} & =-6 x^{2} y+8 x y^{2}-4 \\
\int \frac{\partial \varphi}{\partial x} d x & =\int\left(-6 x^{2} y+8 x y^{2}-4\right) d x \\
\varphi(x, y) & =-2 x^{3} y+4 x^{2} y^{2}-4 x+h(y) \tag{3}
\end{align*}
$$

We obtain the function $h(y)$ using Equation (2). Using $g(x, y)=8 x^{2} y-2 x^{3}-1$ we get the equation:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial y}=g(x, y) \\
& \frac{\partial \varphi}{\partial y}=8 x^{2} y-2 x^{3}-1
\end{aligned}
$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(-2 x^{3} y+4 x^{2} y^{2}-4 x+h(y)\right) & =8 x^{2} y-2 x^{3}-1 \\
-2 x^{3}+8 x^{2} y+h^{\prime}(y) & =8 x^{2} y-2 x^{3}-1 \\
h^{\prime}(y) & =-1
\end{aligned}
$$

Now integrate both sides with respect to y to get:

$$
\begin{aligned}
\int h^{\prime}(y) d y & =\int-1 d y \\
h(y) & =-y+C
\end{aligned}
$$

Letting $C=0$, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$
\varphi(x, y)=-2 x^{3} y+4 x^{2} y^{2}-4 x-y
$$

Math 210, Exam 2, Fall 2010
 Problem 6 Solution

6. Compute the surface area of the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies in the region $\{(x, y, z) \mid z \geq 3, x \geq 0\}$.

Solution: The formula for surface area we will use is:

$$
S=\iint_{\mathcal{S}} d S=\iint_{\mathcal{R}}\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| d A
$$

where the function $\overrightarrow{\mathbf{r}}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ with domain \mathcal{R} is a parameterization of the surface \mathcal{S} and the vectors $\overrightarrow{\mathbf{t}}_{u}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}$ and $\overrightarrow{\mathbf{t}}_{v}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}$ are the tangent vectors.

We begin by finding a parameterization of the paraboloid. Let $x=u \cos (v)$ and $y=u \sin (v)$, where we define u to be nonnegative. Then,

$$
\begin{aligned}
& z=4-x^{2}-y^{2} \\
& z=4-(u \cos (v))^{2}-(u \sin (v))^{2} \\
& z=4-u^{2} \cos ^{2}(v)-u^{2} \sin ^{2}(v) \\
& z=4-u^{2}
\end{aligned}
$$

Thus, we have $\overrightarrow{\mathbf{r}}(u, v)=\left\langle u \cos (v), u \sin (v), 4-u^{2}\right\rangle$. To find the domain \mathcal{R}, we must interpret the inequalities $z \geq 0$ and $x \geq 0$ in terms of the new variables u and v. From the first inequality we find that:

$$
\begin{aligned}
z & \geq 0 \\
4-u^{2} & \geq 0 \\
u^{2} & \leq 4 \\
0 \leq u & \leq 2
\end{aligned}
$$

noting that, by definition, u must be nonnegative. From the second inequality we find that:

$$
\begin{aligned}
x & \geq 0 \\
u \cos (v) & \geq 0 \\
\cos (v) & \geq 0 \\
-\frac{\pi}{2} \leq v & \leq \frac{\pi}{2}
\end{aligned}
$$

noting that $\cos (v) \geq 0$ implies that v is an angle in either Quadrant I or IV. Therefore, a parameterization of \mathcal{S} is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}(u, v)=\left\langle u \cos (v), u \sin (v), 4-u^{2}\right\rangle, \\
& \mathcal{R}=\left\{(u, v) \mid 0 \leq u \leq 2,-\frac{\pi}{2} \leq v \leq \frac{\pi}{2}\right\}
\end{aligned}
$$

The tangent vectors $\overrightarrow{\mathbf{t}}_{u}$ and $\overrightarrow{\mathbf{t}}_{v}$ are then:

$$
\begin{aligned}
\overrightarrow{\mathbf{t}}_{u} & =\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}=\langle\cos (v), \sin (v),-2 u\rangle \\
\overrightarrow{\mathbf{t}}_{v} & =\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}=\langle-u \sin (v), u \cos (v), 0\rangle
\end{aligned}
$$

The cross product of these vectors is:

$$
\begin{aligned}
\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\cos (v) & \sin (v) & -2 u \\
-u \sin (v) & u \cos (v) & 0
\end{array}\right| \\
& =2 u^{2} \cos (v) \hat{\mathbf{i}}+2 u^{2} \sin (v) \hat{\mathbf{j}}+u \hat{\mathbf{k}} \\
& =\left\langle 2 u^{2} \cos (v), 2 u^{2} \sin (v), u\right\rangle
\end{aligned}
$$

The magnitude of the cross product is:

$$
\begin{aligned}
\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| & =\sqrt{\left(2 u^{2} \cos (v)\right)^{2}+\left(2 u^{2} \sin (v)\right)^{2}+u^{2}} \\
& =\sqrt{4 u^{4} \cos ^{2}(v)+4 u^{4} \sin ^{2}(v)+u^{2}} \\
& =\sqrt{4 u^{4}+u^{2}} \\
& =u \sqrt{4 u^{2}+1}
\end{aligned}
$$

We can now compute the surface area.

$$
\begin{aligned}
S & =\iint_{\mathcal{R}}\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| d A \\
& =\int_{0}^{2} \int_{-\pi / 2}^{\pi / 2} u \sqrt{4 u^{2}+1} d v d u \\
& =\int_{0}^{2} u \sqrt{4 u^{2}+1}[v]_{-\pi / 2}^{\pi / 2} d u \\
& =\int_{0}^{2} u \sqrt{4 u^{2}+1}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right] d u \\
& =\int_{0}^{2} \pi u \sqrt{4 u^{2}+1} d u \\
& =\left[\frac{\pi}{12}\left(4 u^{2}+1\right)^{3 / 2}\right]_{0}^{2} \\
& =\left[\frac{\pi}{12}\left(4(2)^{2}+1\right)^{3 / 2}\right]-\left[\frac{\pi}{12}\left(4(0)^{2}+1\right)^{3 / 2}\right] \\
& =\frac{\pi}{12}(17)^{3 / 2}-\frac{\pi}{12}(1)^{3 / 2} \\
& =\frac{\pi}{12}(17 \sqrt{17}-1)
\end{aligned}
$$

