Math 210, Exam 2, Fall 2011
 Problem 1 Solution

1. Let $f(x, y)=y \cos \left(x^{2} y\right)$. Compute the directional derivative at $P=(0,0)$ in the direction $\hat{\mathbf{u}}=\langle 0,1\rangle$. Find the direction of the steepest descent at P.

Solution: By definition, the directional derivative of $f(x, y)$ at the point (a, b) in the direction of the unit vector $\hat{\mathbf{u}}$ is given by the formula

$$
D_{\hat{\mathbf{u}}} f(a, b)=\vec{\nabla} f(a, b) \bullet \hat{\mathbf{u}}
$$

The gradient of $f(x, y)$ is

$$
\vec{\nabla} f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle-2 x y^{2} \sin \left(x^{2} y\right), \cos \left(x^{2} y\right)-x^{2} y \sin \left(x^{2} y\right)\right\rangle
$$

At the point $P=(0,0)$ we have

$$
\vec{\nabla} f(0,0)=\langle 0,1\rangle
$$

Therefore, the directional derivative is

$$
D_{\hat{\mathbf{u}}} f(0,0)=\langle 0,1\rangle \bullet\langle 0,1\rangle=1
$$

The direction of steepest descent for $f(x, y)$ at (a, b) is

$$
\hat{\mathbf{v}}=-\frac{\vec{\nabla} f(a, b)}{\|\vec{\nabla} f(a, b)\|}
$$

Thus, at the point $(0,0)$ the direction of steepest descent is

$$
\hat{\mathbf{v}}=-\frac{\langle 0,1\rangle}{\|\langle 0,1\rangle\|}=\langle 0,1\rangle
$$

Math 210, Exam 2, Fall 2011
 Problem 4 Solution

4. Find and classify all local extrema of the function $f(x, y)=x y e^{y-x}$ on the plane.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x y e^{y-x}$ are $f_{x}=y e^{y-x}-x y e^{y-x}$ and $f_{y}=x e^{y-x}+x y e^{y-x}$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{align*}
& f_{x}=y e^{y-x}-x y e^{y-x}=0 \tag{1}\\
& f_{y}=x e^{y-x}+x y e^{y-x}=0 \tag{2}
\end{align*}
$$

Factoring Equation (1) gives us:

$$
\begin{aligned}
& y e^{y-x}(1-x)=0 \\
& y(1-x)=0 \\
& y=0, \text { or } x=1
\end{aligned}
$$

Note that because e^{y-x} can never be zero we can divide both sides of the equation by it. We can do the same with Equation (2) to simplify it further:

$$
\begin{align*}
x e^{y-x}+x y e^{y-x} & =0 \\
x e^{y-x}(1+y) & =0 \\
x(1+y) & =0 . \tag{3}
\end{align*}
$$

If $y=0$ then Equation (3) gives us $x=0$. If $x=1$ then Equation (3) gives us $y=-1$. Thus, the critical points are $(0,0)$ and $(1,-1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=y e^{y-x}(x-2), \quad f_{y y}=x e^{y-x}(y+2), \quad f_{x y}=-e^{y-x}(x-1)(y+1)
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=-e^{2(y-x)}\left[x^{2}-2 x+(y+1)^{2}\right]
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	-1	0	Saddle Point
$(1,-1)$	$\frac{1}{e^{4}}$	$\frac{1}{e^{2}}$	Local Minimum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Math 210, Exam 2, Fall 2011
 Problem 3 Solution

3. Find the maximum and minimum values of the function $f(x, y)=2 x^{2}+3 y^{2}+1$, where x and y lie on the ellipse $4 x^{2}+y^{2}-4=0$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $4 x^{2}+y^{2}-4=0$ is compact and that f is continuous at all points on the ellipse, guaranteeing the existence of absolute extrema of f. Then, let $g(x, y)=4 x^{2}+y^{2}-4$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=0
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
4 x & =\lambda(8 x) \tag{1}\\
6 y & =\lambda(2 y) \tag{2}\\
4 x^{2}+y^{2} & =4 \tag{3}
\end{align*}
$$

We begin by noting that Equation (1) gives us:

$$
\begin{aligned}
4 x & =\lambda(8 x) \\
4 x-\lambda(8 x) & =0 \\
4 x(1-2 \lambda) & =0
\end{aligned}
$$

From this equation we either have $x=0$ or $\lambda=\frac{1}{2}$. Let's consider each case separately.
Case 1: Let $x=0$. We find the corresponding y-values using Equation (3).

$$
\begin{aligned}
4 x^{2}+y^{2} & =4 \\
0^{2}+y^{2} & =4 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

Thus, the points of interest are $(0,2)$ and $(0,-2)$.
Case 2: Let $\lambda=\frac{1}{2}$. Plugging this into Equation (2) we get:

$$
\begin{aligned}
6 y & =\lambda(2 y) \\
6 y & =\frac{1}{2}(2 y) \\
5 y & =0 \\
y & =0
\end{aligned}
$$

We find the corresponding x-values using Equation (3).

$$
\begin{aligned}
4 x^{2}+y^{2} & =4 \\
4 x^{2}+0^{2} & =4 \\
4 x^{2} & =4 \\
x & = \pm 1
\end{aligned}
$$

Thus, the points of interest are $(1,0)$ and $(-1,0)$.
We now evaluate $f(x, y)=2 x^{2}+3 y^{2}+1$ at each point of interest obtained in Cases 1 and 2 .

$$
\begin{aligned}
f(0,2) & =13 \\
f(0,-2) & =13 \\
f(1,0) & =3 \\
f(-1,0) & =3
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of 13 and an absolute minimum of 3 .

Math 210, Exam 2, Fall 2011
 Problem 4 Solution

4. Evaluate the following integral by reversing the order of integration:

$$
\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \sin \left(x^{2}\right) d x d y
$$

Solution: The domain of integration is

$$
D=\{(x, y): y \leq x \leq \sqrt{\pi}, 0 \leq y \leq \sqrt{\pi}\}
$$

which can be rewritten as

$$
D=\{(x, y): 0 \leq y \leq x, 0 \leq x \leq \sqrt{\pi}\}
$$

Switching the order of integration and evaluating we find that

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \sin \left(x^{2}\right) d x d y & =\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \sin \left(x^{2}\right) d y d x \\
& =\int_{0}^{\sqrt{\pi}}\left[y \sin \left(x^{2}\right)\right]_{0}^{x} d x \\
& =\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x \\
& =\left[-\frac{1}{2} \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\pi}} \\
& =-\frac{1}{2} \cos (\pi)+\frac{1}{2} \cos (0) \\
& =1
\end{aligned}
$$

Math 210, Exam 2, Fall 2011
 Problem 5 Solution

5. Find the mass of the solid cylinder $\mathcal{D}=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 9,0 \leq z \leq 1\right\}$ with density function $f(x, y, z)=3-2 z$.

Solution: The mass is computed via the formula

$$
\text { mass }=\iiint_{\mathcal{D}} f(x, y, z) d V
$$

We compute the integral using cylindrical coordinates. The region \mathcal{D} can be described as

$$
\mathcal{D}=\{(r, \theta, z) \mid 0 \leq r \leq 3,0 \leq z \leq 1,0 \leq \theta \leq 2 \pi\}
$$

Thus, the mass of the cylinder is

$$
\begin{aligned}
\operatorname{mass} & =\iiint_{\mathcal{D}} f(x, y, z) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{1}(3-2 z) r d z d r d \theta \\
& =2 \pi \int_{0}^{3} r\left[3 z-z^{2}\right]_{0}^{1} d r \\
& =2 \pi \int_{0}^{3} 2 r d r \\
& =2 \pi\left[r^{2}\right]_{0}^{3} \\
& =18 \pi
\end{aligned}
$$

