
Math 210, Exam 2, Fall 2011
Problem 1 Solution

1. Let f(x, y) = y cos(x2y). Compute the directional derivative at P = (0, 0) in the direction
û = 〈0, 1〉. Find the direction of the steepest descent at P .

Solution: By definition, the directional derivative of f(x, y) at the point (a, b) in the direc-
tion of the unit vector û is given by the formula

Dûf(a, b) =
−→
∇f(a, b) • û

The gradient of f(x, y) is

−→
∇f(x, y) = 〈fx, fy〉 =

〈
−2xy2 sin(x2y), cos(x2y)− x2y sin(x2y)

〉
At the point P = (0, 0) we have

−→
∇f(0, 0) = 〈0, 1〉

Therefore, the directional derivative is

Dûf(0, 0) = 〈0, 1〉 • 〈0, 1〉 = 1

The direction of steepest descent for f(x, y) at (a, b) is

v̂ = −
−→
∇f(a, b)∣∣∣∣∣∣−→∇f(a, b)

∣∣∣∣∣∣
Thus, at the point (0, 0) the direction of steepest descent is

v̂ = − 〈0, 1〉
||〈0, 1〉||

= 〈0, 1〉
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Math 210, Exam 2, Fall 2011
Problem 4 Solution

4. Find and classify all local extrema of the function f(x, y) = xyey−x on the plane.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = xyey−x are fx = yey−x−xyey−x and fy = xey−x+xyey−x.
These derivatives exist for all (x, y) in R2. Thus, the critical points of f are the solutions to
the system of equations:

fx = yey−x − xyey−x = 0 (1)

fy = xey−x + xyey−x = 0 (2)

Factoring Equation (1) gives us:

yey−x(1 − x) = 0

y(1 − x) = 0

y = 0, or x = 1

Note that because ey−x can never be zero we can divide both sides of the equation by it. We
can do the same with Equation (2) to simplify it further:

xey−x + xyey−x = 0

xey−x(1 + y) = 0

x(1 + y) = 0. (3)

If y = 0 then Equation (3) gives us x = 0. If x = 1 then Equation (3) gives us y = −1.

Thus, the critical points are (0, 0) and (1,−1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = yey−x(x− 2), fyy = xey−x(y + 2), fxy = −ey−x(x− 1)(y + 1)

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2
xy

D(x, y) = −e2(y−x)
[
x2 − 2x + (y + 1)2

]
The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.
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(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −1 0 Saddle Point

(1,−1) 1
e4

1
e2

Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.
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Math 210, Exam 2, Fall 2011
Problem 3 Solution

3. Find the maximum and minimum values of the function f(x, y) = 2x2 + 3y2 + 1, where x
and y lie on the ellipse 4x2 + y2 − 4 = 0.

Solution: We find the minimum and maximum using the method of Lagrange Multi-
pliers. First, we recognize that 4x2 + y2 − 4 = 0 is compact and that f is continuous at
all points on the ellipse, guaranteeing the existence of absolute extrema of f . Then, let
g(x, y) = 4x2 + y2 − 4. We look for solutions to the following system of equations:

fx = λgx, fy = λgy, g(x, y) = 0

which, when applied to our functions f and g, give us:

4x = λ (8x) (1)

6y = λ (2y) (2)

4x2 + y2 = 4 (3)

We begin by noting that Equation (1) gives us:

4x = λ(8x)

4x− λ(8x) = 0

4x(1 − 2λ) = 0

From this equation we either have x = 0 or λ = 1
2
. Let’s consider each case separately.

Case 1: Let x = 0. We find the corresponding y-values using Equation (3).

4x2 + y2 = 4

02 + y2 = 4

y2 = 4

y = ±2

Thus, the points of interest are (0, 2) and (0,−2).

Case 2: Let λ = 1
2
. Plugging this into Equation (2) we get:

6y = λ(2y)

6y =
1

2
(2y)

5y = 0

y = 0
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We find the corresponding x-values using Equation (3).

4x2 + y2 = 4

4x2 + 02 = 4

4x2 = 4

x = ±1

Thus, the points of interest are (1, 0) and (−1, 0).

We now evaluate f(x, y) = 2x2 + 3y2 + 1 at each point of interest obtained in Cases 1 and 2.

f(0, 2) = 13

f(0,−2) = 13

f(1, 0) = 3

f(−1, 0) = 3

From the values above we observe that f attains an absolute maximum of 13 and an absolute
minimum of 3.

2



Math 210, Exam 2, Fall 2011
Problem 4 Solution

4. Evaluate the following integral by reversing the order of integration:∫ √
π

0

∫ √
π

y

sin
(
x2
)
dx dy.

Solution: The domain of integration is

D = {(x, y) : y ≤ x ≤
√
π, 0 ≤ y ≤

√
π}

which can be rewritten as

D = {(x, y) : 0 ≤ y ≤ x, 0 ≤ x ≤
√
π}.

Switching the order of integration and evaluating we find that

∫ √
π

0

∫ √
π

y

sin
(
x2
)
dx dy =

∫ √
π

0

∫ x

0

sin
(
x2
)
dy dx,

=

∫ √
π

0

[
y sin

(
x2
)]x

0
dx,

=

∫ √
π

0

x sin
(
x2
)
dx,

=

[
−1

2
cos
(
x2
)]√π

0

,

= −1

2
cos(π) +

1

2
cos(0),

= 1 .
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Math 210, Exam 2, Fall 2011
Problem 5 Solution

5. Find the mass of the solid cylinder D = {(x, y, z) |x2 + y2 ≤ 9, 0 ≤ z ≤ 1} with density
function f(x, y, z) = 3− 2z.

Solution: The mass is computed via the formula

mass =

∫∫∫
D
f(x, y, z) dV

We compute the integral using cylindrical coordinates. The region D can be described as

D = {(r, θ, z) | 0 ≤ r ≤ 3, 0 ≤ z ≤ 1, 0 ≤ θ ≤ 2π}

Thus, the mass of the cylinder is

mass =

∫∫∫
D
f(x, y, z) dV

=

∫ 2π

0

∫ 3

0

∫ 1

0

(3− 2z) r dz dr dθ,

= 2π

∫ 3

0

r
[
3z − z2

]1
0
dr,

= 2π

∫ 3

0

2r dr,

= 2π
[
r2
]3
0
,

= 18π
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