Math 210, Exam 2, Practice Fall 2009
 Problem 1 Solution

1. Let $f(x, y)=3 x^{2}+x y+2 y^{2}$. Find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, at $(1,1)$, and find the best linear approximation of f at $(1,1)$ and use it to estimate $f(1.1,1.2)$.

Solution: The linearization of $f(x, y)=3 x^{2}+x y+2 y^{2}$ about $(1,1)$ has the form:

$$
L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)
$$

The first partial derivatives of $f(x, y)$ are:

$$
\begin{aligned}
& f_{x}=6 x+y \\
& f_{y}=x+4 y
\end{aligned}
$$

At the point $(1,1)$ we have:

$$
\begin{aligned}
f(1,1) & =3(1)^{2}+(1)(1)+2(1)^{2}=6 \\
f_{x}(1,1) & =6(1)+1=7 \\
f_{y}(1,1) & =1+4(1)=5
\end{aligned}
$$

Thus, the linearization is:

$$
L(x, y)=6+7(x-1)+5(y-1)
$$

The value of $f(1.1,1.2)$ is estimated to be the value of $L(1.1,1.2)$:

$$
\begin{aligned}
& f(1.1,1.2) \approx L(1.1,1.2) \\
& f(1.1,1.2) \approx 6+7(1.1-1)+5(1.2-1) \\
& f(1.1,1.2) \approx 7.7
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 2 Solution

2. Find and classify the critical points of the function

$$
f(x, y)=x^{3}-3 x y+y^{3}
$$

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x^{3}-3 x y+y^{3}$ are $f_{x}=3 x^{2}-3 y$ and $f_{y}=-3 x+3 y^{2}$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=3 x^{2}-3 y=0 \\
f_{y}=-3 x+3 y^{2}=0 \tag{2}
\end{array}
$$

Solving Equation (1) for y we get:

$$
\begin{equation*}
y=x^{2} \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for x we get:

$$
\begin{aligned}
-3 x+3 y^{2} & =0 \\
-3 x+3\left(x^{2}\right)^{2} & =0 \\
-3 x+3 x^{4} & =0 \\
3 x\left(x^{3}-1\right) & =0
\end{aligned}
$$

We observe that the above equation is satisfied if either $x=0$ or $x^{3}-1=0 \Leftrightarrow x=1$. We find the corresponding y-values using Equation (3): $y=x^{2}$.

- If $x=0$, then $y=0^{2}=0$.
- If $x=1$, then $y=1^{2}=1$.

Thus, the critical points are $(0,0)$ and $(1,1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=6 x, \quad f_{y y}=6 y, \quad f_{x y}=-3
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(6 x)(6 y)-(-3)^{2} \\
& D(x, y)=36 x y-9
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	-9	0	Saddle Point
$(1,1)$	27	6	Local Minimum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Figure 1: Picture above are level curves of $f(x, y)$. Darker colors correspond to smaller values of $f(x, y)$. It is apparent that $(0,0)$ is a saddle point and $(1,1)$ corresponds to a local minimum.

Math 210, Exam 2, Practice Fall 2009
 Problem 3 Solution

3. Sketch the region of integration for the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sin \left(x^{3}\right) d x d y$. Compute the integral.

Solution: The region of integration \mathcal{R} is sketched below:

First, we recognize that $\sin \left(x^{3}\right)$ has no simple antiderivative. Therefore, we must change the order of integration to evaluate the integral. The region \mathcal{R} can be described as follows:

$$
\mathcal{R}=\left\{(x, y): 0 \leq y \leq x^{2}, 0 \leq x \leq 2\right\}
$$

where $y=0$ is the bottom curve and $y=x^{2}$ is the top curve, obtained by solving the equation $x=\sqrt{y}$ for y in terms of x. Therefore, the value of the integral is:

$$
\begin{aligned}
\int_{0}^{4} \int_{\sqrt{y}}^{2} \sin \left(x^{3}\right) d x d y & =\int_{0}^{2} \int_{0}^{x^{2}} \sin \left(x^{3}\right) d y d x \\
& =\int_{0}^{2} \sin \left(x^{3}\right)[y]_{0}^{x^{2}} d x \\
& =\int_{0}^{2} x^{2} \sin \left(x^{3}\right) d x \\
& =\left[-\frac{1}{3} \cos \left(x^{3}\right)\right]_{0}^{2} \\
& =\left[-\frac{1}{3} \cos \left(2^{3}\right)\right]-\left[-\frac{1}{3} \cos \left(0^{3}\right)\right] \\
& =-\frac{1}{3} \cos (8)+\frac{1}{3}
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 4 Solution

4. Find the minimum and maximum of the function $f(x, y, z)=x+y-z$ on the ellipsoid

$$
R=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1\right.\right\}
$$

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that R is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad f_{z}=\lambda g_{z}, \quad g(x, y, z)=1
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
1 & =\lambda\left(\frac{2 x}{4}\right) \tag{1}\\
1 & =\lambda\left(\frac{2 y}{9}\right) \tag{2}\\
-1 & =\lambda(2 z) \tag{3}\\
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2} & =1 \tag{4}
\end{align*}
$$

To solve the system of equations, we first solve Equations (1)-(3) for the variables x, y, and z in terms of λ to get:

$$
\begin{equation*}
x=\frac{4}{2 \lambda}, \quad y=\frac{9}{2 \lambda}, \quad z=-\frac{1}{2 \lambda} \tag{5}
\end{equation*}
$$

We then plug Equations (5) into Equation (4) and simplify.

$$
\begin{aligned}
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2} & =1 \\
\frac{\left(\frac{4}{2 \lambda}\right)^{2}}{4}+\frac{\left(\frac{9}{2 \lambda}\right)^{2}}{9}+\left(-\frac{1}{2 \lambda}\right)^{2} & =1 \\
\frac{\frac{16}{4 \lambda^{2}}}{4}+\frac{\frac{81}{4 \lambda^{2}}}{9}+\frac{1}{4 \lambda^{2}} & =1
\end{aligned}
$$

At this point we multiply both sides of the equation by $4 \lambda^{2}$ to get:

$$
\begin{aligned}
4 \lambda^{2}\left(\frac{\frac{16}{4 \lambda^{2}}}{4}+\frac{\frac{81}{4 \lambda^{2}}}{9}+\frac{1}{4 \lambda^{2}}\right) & =4 \lambda^{2}(1) \\
\frac{16}{4}+\frac{81}{9}+1 & =4 \lambda^{2} \\
4+9+1 & =4 \lambda^{2} \\
\lambda^{2} & =\frac{7}{2} \\
\lambda & = \pm \sqrt{\frac{7}{2}} \\
\lambda & = \pm \frac{\sqrt{14}}{2}
\end{aligned}
$$

- When $\lambda=\frac{\sqrt{14}}{2}$, Equations (5) give us the first candidate for the location of an extreme value:

$$
x=\frac{4 \sqrt{14}}{14}, \quad y=\frac{9 \sqrt{14}}{14}, \quad z=-\frac{\sqrt{14}}{14}
$$

- When $\lambda=-\frac{\sqrt{14}}{2}$, Equations (5) give us the first candidate for the location of an extreme value:

$$
x=-\frac{4 \sqrt{14}}{14}, \quad y=-\frac{9 \sqrt{14}}{14}, \quad z=\frac{\sqrt{14}}{14}
$$

Evaluating $f(x, y, z)$ at these points we find that:

$$
\begin{gathered}
f\left(\frac{4 \sqrt{14}}{14}, \frac{9 \sqrt{14}}{14},-\frac{\sqrt{14}}{14}\right)=\sqrt{14} \\
f\left(-\frac{4 \sqrt{14}}{14},-\frac{9 \sqrt{14}}{14}, \frac{\sqrt{14}}{14}\right)=-\sqrt{14}
\end{gathered}
$$

Therefore, the absolute maximum value of f on R is $\sqrt{14}$ and the absolute minimum of f on R is $-\sqrt{14}$.

Note: The level surfaces $f(x, y, z)=\sqrt{14}$ and $f(x, y, z)=-\sqrt{14}$ are planes tangent to the ellipsoid at the critical points.

Math 210, Exam 2, Practice Fall 2009
 Problem 5 Solution

5. Find the tangent plane to the surface:

$$
S=\left\{(x, y, z): x^{2}+y^{3}-2 z=1\right\}
$$

at the point $(1,2,4)$.
Solution: Let $F(x, y, z)=x^{2}+y^{3}-2 z=1$ be the equation for the surface. We use the following formula for the equation for the tangent plane:

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

because the equation for the surface is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} F(a, b, c)=$ $\left\langle F_{x}(a, b, c), F_{y}(a, b, c), F_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $F(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of $F(x, y, z)=x^{2}+y^{3}-2 z$ are:

$$
F_{x}=2 x, \quad F_{y}=3 y^{2}, \quad F_{z}=-2
$$

Evaluating these derivatives at $(1,2,4)$ we get:

$$
\begin{aligned}
& F_{x}(1,2,4)=2(1)=2 \\
& F_{y}(1,2,4)=3(2)^{2}=12 \\
& F_{z}(1,2,4)=-2
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
2(x-1)+12(y-2)-2(z-4)=0
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 6 Solution

6. Let $F(x, y, z)=3 x^{2}+y^{2}-4 z^{2}$. Find the equation of the tangent plane to the level surface $F(x, y, z)=1$ at the point $(1,-4,3)$.

Solution: We use the following formula for the equation for the tangent plane:

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

because the equation for the surface is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} F(a, b, c)=$ $\left\langle F_{x}(a, b, c), F_{y}(a, b, c), F_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $F(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of $F(x, y, z)=3 x^{2}+y^{2}-4 z^{2}$ are:

$$
F_{x}=6 x, \quad F_{y}=2 y, \quad F_{z}=-8 z
$$

Evaluating these derivatives at $(1,-4,3)$ we get:

$$
\begin{aligned}
& F_{x}(1,-4,3)=6(1)=6 \\
& F_{y}(1,-4,3)=2(-4)=-8 \\
& F_{z}(1,-4,3)=-8(3)=-24
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
6(x-1)-8(y+4)-24(z-3)=0
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 7 Solution

7. Let $f(x, y)=\frac{1}{3} x^{3}+y^{2}-x y$. Find all critical points of $f(x, y)$ and classify each as a local maximum, local minimum, or saddle point.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=\frac{1}{3} x^{3}+y^{2}-x y$ are $f_{x}=x^{2}-y$ and $f_{y}=2 y-x$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{align*}
f_{x} & =x^{2}-y \tag{1}\\
f_{y} & =2 y \tag{2}\\
y^{2}-x & =0
\end{align*}
$$

Solving Equation (1) for y we get:

$$
\begin{equation*}
y=x^{2} \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for x we get:

$$
\begin{aligned}
2 y-x & =0 \\
2 x^{2}-x & =0 \\
x(2 x-1) & =0 \\
\Leftrightarrow \quad x=0 \text { or } x & =\frac{1}{2}
\end{aligned}
$$

We find the corresponding y-values using Equation (3): $y=x^{2}$.

- If $x=0$, then $y=0^{2}=0$.
- If $x=\frac{1}{2}$, then $y=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.

Thus, the critical points are $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$.
We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=2 x, \quad f_{y y}=2, \quad f_{x y}=-1
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(2 x)(2)-(-1)^{2} \\
& D(x, y)=4 x-1
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	-1	0	Saddle Point
$\left(\frac{1}{2}, \frac{1}{4}\right)$	1	1	Local Minimum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Figure 1: Picture above are level curves of $f(x, y)$. Darker colors correspond to smaller values of $f(x, y)$. It is apparent that $(0,0)$ is a saddle point and $\left(\frac{1}{2}, \frac{1}{4}\right)$ corresponds to a local minimum.

Math 210, Exam 2, Practice Fall 2009
 Problem 8 Solution

8. Find the minimum and maximum of the function $f(x, y)=x^{2}-y$ subject to the condition $x^{2}+y^{2}=4$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^{2}+y^{2}=4$ is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y)=x^{2}+y^{2}=4$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=4
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
2 x & =\lambda(2 x) \tag{1}\\
-1 & =\lambda(2 y) \tag{2}\\
x^{2}+y^{2} & =4 \tag{3}
\end{align*}
$$

We begin by noting that Equation (1) gives us:

$$
\begin{aligned}
2 x & =\lambda(2 x) \\
2 x-\lambda(2 x) & =0 \\
2 x(1-\lambda) & =0
\end{aligned}
$$

From this equation we either have $x=0$ or $\lambda=1$. Let's consider each case separately.
Case 1: Let $x=0$. We find the corresponding y-values using Equation (3).

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
0^{2}+y^{2} & =4 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

Thus, the points of interest are $(0,2)$ and $(0,-2)$.
Case 2: Let $\lambda=1$. Plugging this into Equation (2) we get:

$$
\begin{aligned}
-1 & =\lambda(2 y) \\
-1 & =1(2 y) \\
y & =-\frac{1}{2}
\end{aligned}
$$

We find the corresponding x-values using Equation (3).

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
x^{2}+\left(-\frac{1}{2}\right)^{2} & =4 \\
x^{2}+\frac{1}{4} & =4 \\
x^{2} & =\frac{15}{4} \\
x & = \pm \frac{\sqrt{15}}{2}
\end{aligned}
$$

Thus, the points of interest are $\left(\frac{\sqrt{15}}{2},-\frac{1}{2}\right)$ and $\left(-\frac{\sqrt{15}}{2},-\frac{1}{2}\right)$.

We now evaluate $f(x, y)=x^{2}-y$ at each point of interest obtained by Cases 1 and 2 .

$$
\begin{aligned}
f(0,2) & =-2 \\
f(0,-2) & =2 \\
f\left(\frac{\sqrt{15}}{2},-\frac{1}{2}\right) & =\frac{17}{4} \\
f\left(-\frac{\sqrt{15}}{2},-\frac{1}{2}\right) & =\frac{17}{4}
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of $\frac{17}{4}$ and an absolute minimum of -2 .

Figure 1: Shown in the figure are the level curves of $f(x, y)=x^{2}-y$ and the circle $x^{2}+y^{2}=4$ (thick, black curve). Darker colors correspond to smaller values of $f(x, y)$. Notice that (1) the parabola $f(x, y)=x^{2}-y=\frac{17}{4}$ is tangent to the circle at the points $\left(\frac{\sqrt{15}}{2},-\frac{1}{2}\right)$ and $\left(-\frac{\sqrt{15}}{2},-\frac{1}{2}\right)$ which correspond to the absolute maximum and (2) the parabola $f(x, y)=x^{2}-y=-2$ is tangent to the circle at the point $(0,2)$ which corresponds to the absolute minimum.

Math 210, Exam 2, Practice Fall 2009
 Problem 9 Solution

9. Use polar coordinates to find the volume of the region bounded by the paraboloid $z=$ $1-x^{2}-y^{2}$ in the first octant $x \geq 0, y \geq 0, z \geq 0$.

Solution: The volume formula we use is:

$$
V=\iint_{\mathcal{D}}\left(1-x^{2}-y^{2}\right) d A
$$

where \mathcal{D} is the projection of the paraboloid onto the first quadrant in the $x y$-plane. We are asked to use polar coordinates:

$$
x=r \cos \theta, y=r \sin \theta, d A=r d r d \theta
$$

1. First, we describe the region \mathcal{D}. Since $z \geq 0$ and $z=1-x^{2}-y^{2}$ we know that:

$$
\begin{aligned}
1-x^{2}-y^{2} & \geq 0 \\
x^{2}+y^{2} & \leq 1
\end{aligned}
$$

Since the projection is in the first quadrant, the region \mathcal{D} can be described in rectangular coordinates as:

$$
\mathcal{D}=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}
$$

or, equivalently, in polar coordinates as:

$$
\mathcal{D}=\left\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

2. Then, using the polar coordinate equations, the paraboloid $z=1-x^{2}-y^{2}$ can be written in polar coordinates as:

$$
z=1-r^{2}
$$

3. Finally, we compute the volume as follows:

$$
\begin{aligned}
V & =\iint_{\mathcal{D}}\left(1-x^{2}-y^{2}\right) d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{\pi / 2}\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1} d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{4} d \theta \\
& =\left[\frac{1}{4} \theta\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{8}
\end{aligned}
$$

10. Find the minimum and maximum of the function

$$
f(x, y, z)=x^{2}-y^{2}+2 z^{2}
$$

on the surface of the sphere defined by the equation $x^{2}+y^{2}+z^{2}=1$.
Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that the sphere is compact and that $f(x, y, z)$ is continuous on the sphere, which guarantees the existence of absolute extrema of f. Then, let $g(x, y, z)=x^{2}+y^{2}+z^{2}=1$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad f_{z}=\lambda g_{z}, \quad g(x, y, z)=1
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
2 x & =\lambda(2 x) \tag{1}\\
-2 y & =\lambda(2 y) \tag{2}\\
4 z & =\lambda(2 z) \tag{3}\\
x^{2}+y^{2}+z^{2} & =1 \tag{4}
\end{align*}
$$

From Equation (1) we can have either $x=0$ or $\lambda=1$.

- If $x=0$ then we turn to Equation (2). In this case we either have $y=0$ or $\lambda=-1$.
- Suppose $y=0$. Plugging $x=0$ and $y=0$ into Equation (4) we get:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =1 \\
0^{2}+0^{2}+z^{2} & =1 \\
z^{2} & =1 \\
z & = \pm 1
\end{aligned}
$$

Thus, the points of interest are $(0,0,1)$ and $(0,0,-1)$.

- Now suppose $\lambda=-1$. Then Equation (3) gives us:

$$
\begin{aligned}
4 z & =\lambda(2 z) \\
4 z & =(-1)(2 z) \\
6 z & =0 \\
z & =0
\end{aligned}
$$

Plugging $x=0$ and $z=0$ into Equation (4) we get:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =1 \\
0^{2}+y^{2}+0^{2} & =1 \\
y^{2} & =1 \\
y & = \pm 1
\end{aligned}
$$

Thus, the points of interest are $(0,1,0)$ and $(0,-1,0)$.

- If $\lambda=1$ then Equations (2) and (3) give us:

$$
\begin{aligned}
-2 y & =\lambda(2 y) \\
-2 y & =(1)(2 y) \\
-4 y & =0 \\
y & =0
\end{aligned}
$$

Plugging $y=0$ and $z=0$ into Equation (4) we get:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =1 \\
x^{2}+0^{2}+0^{2} & =1 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

Thus, the points of interest are $(1,0,0)$ and $(-1,0,0)$.
Evaluating $f(x, y, z)$ at all points of interest we find that:

$$
\begin{aligned}
f(1,0,0) & =1 \\
f(-1,0,0) & =1 \\
f(0,1,0) & =-1 \\
f(0,-1,0) & =-1 \\
f(0,0,1) & =2 \\
f(0,0,-1) & =2
\end{aligned}
$$

Therefore, the absolute maximum value of f is 2 and the absolute minimum of f is -1 .

Math 210, Exam 2, Practice Fall 2009 Problem 11 Solution

11. Using cylindrical coordinates, compute

$$
\iiint_{W}\left(x^{2}+y^{2}\right)^{1 / 2} d V
$$

where W is the region within the cylinder $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq y$.
Solution: The region W is plotted below.

In cylindrical coordinates, the equations for the cylinder $x^{2}+y^{2}=4$ and the plane $z=y$ are:

$$
\begin{aligned}
\text { Cylinder : } & r=2 \\
\text { Plane }: & z=r \sin \theta
\end{aligned}
$$

Furthermore, we can write the integrand in cylindrical coordinates as:

$$
\begin{aligned}
f(x, y, z) & =\left(x^{2}+y^{2}\right)^{1 / 2} \\
f(r, \theta, z) & =r
\end{aligned}
$$

The projection of W onto the $x y$-plane is the half-disk $0 \leq r \leq 2,0 \leq \theta \leq \pi$. Using the fact that $d V=r d z d r d \theta$ in cylindrical coordinates, the value of the integral is:

$$
\begin{aligned}
\iiint_{W}\left(x^{2}+y^{2}\right)^{1 / 2} d V & =\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{r \sin \theta} r^{2} d z d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2} r^{2}[z]_{0}^{r \sin \theta} d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2} r^{3} \sin \theta d r d \theta \\
& =\int_{0}^{\pi} \sin \theta\left[\frac{1}{4} r^{4}\right]_{0}^{2} d \theta \\
& =4 \int_{0}^{\pi} \sin \theta d \theta \\
& =4[-\cos \theta]_{0}^{\pi} \\
& =4[-\cos \pi+\cos 0] \\
& =8
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 12 Solution

12. Compute the integral $\iiint_{B} x^{2} d V$, where B is the unit ball

$$
B=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

Solution: Due to the fact that B is a ball of radius 1, we use Spherical Coordinates to evaluate the integral. In Spherical Coordinates, the equation for the sphere is $\rho=1$ and the integrand is:

$$
\begin{aligned}
& f(x, y, z)=x^{2} \\
& f(\rho, \phi, \theta)=(\rho \sin \phi \cos \theta)^{2}
\end{aligned}
$$

Using the fact that $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ in Spherical Coordinates, the value of the integral is:

$$
\begin{aligned}
\iiint_{B} x^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1}(\rho \sin \phi \cos \theta)^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{4} \sin ^{3} \phi \cos ^{2} \theta d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{3} \phi \cos ^{2} \theta\left[\frac{1}{5} \rho^{5}\right]_{0}^{1} d \phi d \theta \\
& =\frac{1}{5} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{3} \phi \cos ^{2} \theta d \phi d \theta \\
& =\frac{1}{5} \int_{0}^{2 \pi} \cos ^{2} \theta\left[\frac{1}{3} \cos ^{3} \phi-\cos \phi\right]_{0}^{\pi} d \theta \\
& =\frac{1}{5} \int_{0}^{2 \pi} \cos ^{2} \theta\left[\left(\frac{1}{3} \cos ^{3} \pi-\cos \pi\right)-\left(\frac{1}{3} \cos ^{3} 0-\cos 0\right)\right] d \theta \\
& =\frac{1}{5} \int_{0}^{2 \pi} \frac{4}{3} \cos ^{2} \theta d \theta \\
& =\frac{4}{15}\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi} \\
& =\frac{4}{15}\left[\left(\frac{1}{2}(2 \pi)+\frac{1}{4} \sin (4 \pi)\right)-\left(\frac{1}{2}(0)+\frac{1}{4} \sin (0)\right)\right] \\
& =\frac{4 \pi}{15}
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 13 Solution

13. Find the volume of the region bounded below and above by the surfaces $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$.

Solution: The region is plotted below.

The volume may be computed using either a double integral or a triple integral. Using a triple integral, the formula is:

$$
V=\iiint_{R} 1 d V
$$

Due to the shape of the boundary, we will use Cylindrical Coordinates. The paraboloids can be written in Cylindrical Coordinates as:

$$
\begin{array}{ll}
\text { Paraboloid 1: } & z=r^{2} \\
\text { Paraboloid 2: } & z=2-r^{2}
\end{array}
$$

The region R is bounded above by $z=2-r^{2}$ and below by $z=r^{2}$. The projection of R onto the $x y$-plane is the disk $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. The radius of the disk is obtained by determining the intersection of the two surfaces:

$$
\begin{aligned}
z & =z \\
r^{2} & =2-r^{2} \\
r^{2} & =1 \\
r & =1
\end{aligned}
$$

Using the fact that $d V=r d z d r d \theta$ in Cylindrical Coordinates, the volume is:

$$
\begin{aligned}
V & =\iiint_{R} 1 d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{2-r^{2}} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r[z]_{r^{2}}^{2-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r\left(2-r^{2}-r^{2}\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(2 r-2 r^{3}\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left[r^{2}-\frac{1}{2} r^{4}\right]_{0}^{1} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} d \theta \\
& =\frac{1}{2}[\theta]_{0}^{2 \pi} \\
& =\pi
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 14 Solution

14. Let $f(x, y)=e^{x y}$ and (r, θ) be polar coordinates. Find $\frac{\partial f}{\partial r}$. Express your answer in terms of the variables x and y.

Solution: First, the equations for x and y in polar coordinates are defined as:

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{1}
\end{equation*}
$$

Using the Chain Rule, the derivative $\frac{\partial f}{\partial r}$ can be expressed as follows:

$$
\begin{equation*}
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \tag{2}
\end{equation*}
$$

The partial derivatives on the right hand side of the above equation are:

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=y e^{x y} & \frac{\partial x}{\partial r}=\cos \theta \\
\frac{\partial f}{\partial y}=x e^{x y} & \frac{\partial y}{\partial r}=\sin \theta
\end{array}
$$

Plugging these into Equation (2) and using Equations (1) we get:

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial f}{\partial r}=y e^{x y} \cos \theta+x e^{x y} \sin \theta \\
& \frac{\partial f}{\partial r}=e^{x y}(y \cos \theta+x \sin \theta)
\end{aligned}
$$

Using the fact that:

$$
\cos \theta=\frac{x}{r}, \quad \sin \theta=\frac{y}{r}, \quad r=\sqrt{x^{2}+y^{2}}
$$

we can write our answer in terms of x and y :

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=e^{x y}(y \cos \theta+x \sin \theta) \\
& \frac{\partial f}{\partial r}=y e^{x y}\left(y \cdot \frac{x}{r}+x \cdot \frac{y}{r}\right) \\
& \frac{\partial f}{\partial r}=y e^{x y}\left(y \cdot \frac{x}{\sqrt{x^{2}+y^{2}}}+x \cdot \frac{y}{\sqrt{x^{2}+y^{2}}}\right) \\
& \frac{\partial f}{\partial r}=\frac{2 x y}{\sqrt{x^{2}+y^{2}}} e^{x y}
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 15 Solution

15. Compute the average value of the function $f(x, y)=2+x-y$ on the quarter disk $A=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}$.

Solution: We use the following formula to compute the average value of f :

$$
\bar{f}=\frac{\iint_{A} f(x, y) d A}{\iint_{A} 1 d A}
$$

Since the region A is a quarter circle, we use polar coordinates: $x=r \cos \theta, y=r \sin \theta$, $d A=r d r d \theta$. The region A can then be described as:

$$
A=\left\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

and the function f written in polar coordinates is:

$$
f(r, \theta)=2+r \cos \theta-r \sin \theta
$$

The double integral of f over A is then:

$$
\begin{aligned}
\iint_{A} f(x, y) d A & =\int_{0}^{\pi / 2} \int_{0}^{1}(2+r \cos \theta-r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi / 2}\left[r^{2}+\frac{1}{3} r^{3} \cos \theta-\frac{1}{3} r^{3} \sin \theta\right]_{0}^{1} d \theta \\
& =\int_{0}^{\pi / 2}\left(1+\frac{1}{3} \cos \theta-\frac{1}{3} \sin \theta\right) d \theta \\
& =\left[\theta+\frac{1}{3} \sin \theta+\frac{1}{3} \cos \theta\right]_{0}^{\pi / 2} \\
& =\left[\frac{\pi}{2}+\frac{1}{3} \sin \frac{\pi}{2}+\frac{1}{3} \cos \frac{\pi}{2}\right]-\left[0+\frac{1}{3} \sin 0+\frac{1}{3} \cos 0\right] \\
& =\frac{\pi}{2}
\end{aligned}
$$

We recognize that the double integral $\iint_{A} 1 d A$ represents the area of A. Since A is a quarter circle of radius 1 , the area is $\frac{\pi}{4}$. Thus, the average value of f is:

$$
\bar{f}=\frac{\iint_{A} f(x, y) d A}{\iint_{A} 1 d A}=\frac{\frac{\pi}{2}}{\frac{\pi}{4}}=2
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 16 Solution

16. Compute the integral

$$
\iint_{D} \frac{x}{y+1} d A
$$

where D is the triangle with vertices $(0,0),(1,1)$, and $(2,0)$.
Solution:

The integral is evaluated as follows:

$$
\begin{aligned}
\iint_{D} \frac{x}{y+1} d A & =\int_{0}^{1} \int_{y}^{2-y} \frac{x}{y+1} d x d y \\
& =\int_{0}^{1} \frac{1}{y+1}\left[\frac{x^{2}}{2}\right]_{y}^{2-y} \\
& =\int_{0}^{1} \frac{1}{y+1}\left[\frac{(2-y)^{2}}{2}-\frac{y^{2}}{2}\right] d y \\
& =\frac{1}{2} \int_{0}^{1} \frac{1}{y+1}\left(4-4 y+y^{2}-y^{2}\right) d y \\
& =\frac{1}{2} \int_{0}^{1} \frac{1}{y+1}(4-4 y) d y \\
& =2 \int_{0}^{1} \frac{1-y}{1+y} d y \\
& =2 \int_{0}^{1}\left(\frac{2}{1+y}-1\right) d y \\
& =2[2 \ln (1+y)-y]_{0}^{1} \\
& =2[2 \ln (1+1)-1]-2[2 \ln (1+0)-0] \\
& =4 \ln (2)-2
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 17 Solution

17. Let $f(x, y)=x^{2}-x+y^{2}$, and let \mathcal{D} be the bounded region defined by the inequalities $x \geq 0$ and $x \leq 1-y^{2}$.
(a) Find and classify the critical points of $f(x, y)$.
(b) Sketch the region \mathcal{D}.
(c) Find the absolute maximum and minimum values of f on the region \mathcal{D}, and list the points where these values occur.

Solution: First we note that the domain of $f(x, y)$ is bounded and closed, i.e. compact, and that $f(x, y)$ is continuous on the domain. Thus, we are guaranteed to have absolute extrema.
(a) The partial derivatives of f are $f_{x}=2 x-1$ and $f_{y}=2 y$. The critical points of f are all solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=2 x-1=0 \\
f_{y}=2 y=0
\end{array}
$$

The only solution is $x=\frac{1}{2}$ and $y=0$, which is an interior point of \mathcal{D}. The function value at the critical point is:

$$
f\left(\frac{1}{2}, 0\right)=-\frac{1}{4}
$$

(b) The region \mathcal{D} (shaded) is plotted below along with level curves of $f(x, y)$.

(c) We must now determine the minimum and maximum values of f on the boundary of \mathcal{D}. To do this, we must consider each part of the boundary separately:

Part I : Let this part be the line segment between $(0,-1)$ and $(0,1)$. On this part we have $x=0$ and $-1 \leq y \leq 1$. We now use the fact that $x=0$ to rewrite $f(x, y)$ as a function of one variable that we call $g_{I}(y)$.

$$
\begin{aligned}
f(x, y) & =x^{2}-x+y^{2} \\
g_{I}(y) & =0^{2}-0+y^{2} \\
g_{I}(y) & =y^{2}
\end{aligned}
$$

The critical points of $g_{I}(y)$ are:

$$
\begin{aligned}
g_{I}^{\prime}(y) & =0 \\
2 y & =0 \\
y & =0
\end{aligned}
$$

Evaluating $g_{I}(y)$ at the critical point $y=0$ and at the endpoints of the interval $-1 \leq y \leq 1$, we find that:

$$
g_{I}(0)=0, \quad g_{I}(-1)=1, \quad g_{I}(1)=1
$$

Note that these correspond to the function values:

$$
f(0,0)=0, \quad f(0,-1)=1, \quad f(0,1)=1
$$

Part II : Let this part be the parabola $x=1-y^{2}$ on the interval $-1 \leq y \leq 1$. We now use the fact that $x=1-y^{2}$ to rewrite $f(x, y)$ as a function of one variable that we call $g_{I I}(y)$.

$$
\begin{aligned}
f(x, y) & =x^{2}-x+y^{2} \\
g_{I I}(y) & =\left(1-y^{2}\right)^{2}-\left(1-y^{2}\right)+y^{2} \\
g_{I I}(y) & =1-2 y^{2}+y^{4}-1+y^{2}+y^{2} \\
g_{I I}(y) & =y^{4}
\end{aligned}
$$

The critical points of $g_{I I}(y)$ are:

$$
\begin{aligned}
g_{I I}^{\prime}(y) & =0 \\
4 y^{3} & =0 \\
y & =0
\end{aligned}
$$

Evaluating $g_{I I}(y)$ at the critical point $y=0$ and at the endpoints of the interval $-1 \leq y \leq 1$, we find that:

$$
g_{I I}(0)=0, \quad g_{I I}(-1)=1, \quad g_{I I}(1)=1
$$

Note that these correspond to the function values:

$$
f(1,0)=0, \quad f(0,-1)=1, \quad f(0,1)=1
$$

Finally, after comparing these values of f we find that the absolute maximum of f is 1 at the points $(0,-1)$ and $(0,1)$ and that the absolute minimum of f is $-\frac{1}{4}$ at the point $\left(\frac{1}{2}, 0\right)$.

Note: In the figure from part (b) we see that the level curves of f are circles centered at $\left(\frac{1}{2}, 0\right)$. It is clear that the absolute minimum of f occurs at $\left(\frac{1}{2}, 0\right)$ and that the absolute maximum of f occurs at $(0,-1)$ and $(0,1)$, which are points on the largest circle centered at $\left(\frac{1}{2}, 0\right)$ that contains points in \mathcal{D}.

Math 210, Exam 2, Practice Fall 2009 Problem 18 Solution

18. Consider the function $F(x, y)=x^{2} e^{4 x-y^{2}}$. Find the direction (unit vector) in which F has the fastest growth at the point $(1,2)$.

Solution: The direction in which F has the fastest growth at the point $(1,2)$ is the direction of steepest ascent:

$$
\hat{\mathbf{u}}=\frac{1}{|\vec{\nabla} F(1,2)|} \vec{\nabla} F(1,2)
$$

The gradient of F is:

$$
\begin{aligned}
& \vec{\nabla} F=\left\langle F_{x}, F_{y}\right\rangle \\
& \vec{\nabla} F=\left\langle 2 x e^{4 x-y^{2}}+4 x^{2} e^{4 x-y^{2}},-2 x^{2} y e^{4 x-y^{2}}\right\rangle
\end{aligned}
$$

and its value at the point $(1,2)$ is:

$$
\vec{\nabla} F(1,2)=\langle 6,-4\rangle
$$

Thus, the direction of steepest ascent is:

$$
\begin{aligned}
\hat{\mathbf{u}} & =\frac{1}{|\vec{\nabla} F(1,2)|} \vec{\nabla} F(1,2) \\
& =\frac{1}{|6,-4|}\langle 6,-4\rangle \\
& =\frac{1}{\sqrt{13}}\langle 3,-2\rangle
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 19 Solution

19. Let $\overrightarrow{\mathbf{r}}(t)=\left\langle e^{-t}, \cos (t)\right\rangle$ describe movement of a point in the plane, and let $f(x, y)=$ $x^{2} y-e^{x+y}$. Use the chain rule to compute the derivative of $f(\overrightarrow{\mathbf{r}}(t))$ at time $t=0$.

Solution: We use the Chain Rule for Paths formula:

$$
\frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))=\vec{\nabla} f \cdot \overrightarrow{\mathbf{r}}^{\prime}(t)
$$

where the gradient of f is:

$$
\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y-e^{x+y}, x^{2}-e^{x+y}\right\rangle
$$

and the derivative $\overrightarrow{\mathbf{r}}^{\prime}(t)$ is:

$$
\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle-e^{-t},-\sin (t)\right\rangle
$$

Taking the dot product of these vectors gives us the derivative of $f(\overrightarrow{\mathbf{r}}(t))$.

$$
\begin{aligned}
& \frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))=\vec{\nabla} f \cdot \overrightarrow{\mathbf{r}}^{\prime}(t) \\
& \frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))=\left\langle 2 x y-e^{x+y}, x^{2}-e^{x+y}\right\rangle \cdot\left\langle-e^{-t},-\sin (t)\right\rangle \\
& \frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))=-e^{-t}\left(2 x y-e^{x+y}\right)-\sin (t)\left(x^{2}-e^{x+y}\right)
\end{aligned}
$$

At $t=0$ we know that $\overrightarrow{\mathbf{r}}(0)=\langle 1,1\rangle$ which tells us that $x=1$ and $y=1$. Therefore, plugging $t=0, x=1$, and $y=1$ into the derivative we find that:

$$
\begin{aligned}
&\left.\frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))\right|_{t=0}=-e^{-0}\left(2(1)(1)-e^{1+1}\right)-\sin (0)\left(1^{2}-e^{1+1}\right) \\
& {\left[\left.\frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))\right|_{t=0}\right.}=e^{2}-2 \\
&
\end{aligned}
$$

Math 210, Exam 2, Practice Fall 2009
 Problem 20 Solution

20. Let the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ describe the density in the region $A=$ $\left\{x^{2}+y^{2}+z^{2} \leq 1, \sqrt{x^{2}+y^{2}} \leq z\right\}$. Use spherical coordinates to compute its mass.

Solution: The region A is plotted below.

The mass of the region is given by the triple integral:

$$
\operatorname{mass}=\iiint_{A} f(x, y, z) d V
$$

In Spherical Coordinates, the equations for the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$ are:

$$
\begin{aligned}
\text { Sphere }: & \rho=1 \\
\text { Cone : } & \phi=\frac{\pi}{4}
\end{aligned}
$$

and the density function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ is:

$$
\text { density : } \quad f(\rho, \phi, \theta)=\rho
$$

Using the fact that $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ in Spherical Coordinates, the mass of the region is:

$$
\begin{aligned}
& \operatorname{mass}=\iiint_{A} f(x, y, z) d V \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \rho\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \phi\left[\frac{1}{4} \rho^{4}\right]_{0}^{1} d \phi d \theta \\
&=\frac{1}{4} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \phi d \phi d \theta \\
&=\frac{1}{4} \int_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 4} d \theta \\
&=\frac{1}{4} \int_{0}^{2 \pi}\left[-\cos \frac{\pi}{4}-(-\cos 0)\right] d \theta \\
&=\frac{1}{4} \int_{0}^{2 \pi}\left(-\frac{\sqrt{2}}{2}+1\right) d \theta \\
&=\frac{1}{4}\left(1-\frac{\sqrt{2}}{2}\right)[\theta]_{0}^{2 \pi} \\
&=\frac{\pi}{2}\left(1-\frac{\sqrt{2}}{2}\right) \\
&
\end{aligned}
$$

